[1]
|
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Mathématiques & Applications, vol. 40, Springer Verlag, Paris, 2003.
|
[2]
|
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007.
|
[3]
|
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), 4770-4775.
|
[4]
|
A. Källén, Computational Pharmacokinetics, Chapman and Hall, CRC, London, 2007.
|
[5]
|
U. Ledzewicz and H. Moore, Dynamical systems properties of a mathematical model for treatment of CML, Applied Sciences, 6 (2016), p291.
doi: 10.3390/app6100291.
|
[6]
|
U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578.
doi: 10.3934/mbe.2005.2.561.
|
[7]
|
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.
doi: 10.1137/060665294.
|
[8]
|
M. Leszczyński, E. Ratajczyk, U. Ledzewicz and H. Schättler, Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics, Opuscula Math., 37 (2017), 403-419.
doi: 10.7494/OpMath.2017.37.3.403.
|
[9]
|
P. Macheras and A. Iliadin, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Interdisciplinary Applied Mathematics, Vol. 30, 2nd ed., Springer, New York, 2016.
doi: 10.1007/978-3-319-27598-7.
|
[10]
|
H. Moore, L. Strauss and U. Ledzewicz, Optimization of combination therapy for chronic myeloid leukemia with dosing constraints, J. Mathematical Biology, 77 (2018), 1533-1561.
doi: 10.1007/s00285-018-1262-6.
|
[11]
|
A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004), 159-184.
doi: 10.1016/j.mbs.2004.06.003.
|
[12]
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964.
|
[13]
|
M. Rowland and T. N. Tozer, Clinical Pharmacokinetics and Pharmacodynamics, Wolters Kluwer Lippicott, Philadelphia, 1995.
|
[14]
|
H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, 2012.
doi: 10.1007/978-1-4614-3834-2.
|
[15]
|
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Interdisciplinary Applied Mathematics, vol. 42, Springer, 2015.
doi: 10.1007/978-1-4939-2972-6.
|
[16]
|
H. E. Skipper, On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future), Bulletin of Mathematical Biology, 48 (1986), 253-278.
doi: 10.1007/BF02459681.
|