• Previous Article
    Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics
  • DCDS-B Home
  • This Issue
  • Next Article
    Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability
May  2019, 24(5): 2365-2381. doi: 10.3934/dcdsb.2019099

Applications of stochastic semigroups to cell cycle models

1. 

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

2. 

Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland

* Corresponding author: Ryszard Rudnicki

Received  December 2017 Revised  January 2019 Published  March 2019

Fund Project: This research was partially supported by the National Science Centre (Poland) Grant No. 2017/27/B/ST1/00100

We consider a generational and continuous-time two-phase model of the cell cycle. The first model is given by a stochastic operator, and the second by a piecewise deterministic Markov process. In the second case we also introduce a stochastic semigroup which describes the evolution of densities of the process. We study long-time behaviour of these models. In particular we prove theorems on asymptotic stability and sweeping. We also show the relations between both models.

Citation: Katarzyna Pichór, Ryszard Rudnicki. Applications of stochastic semigroups to cell cycle models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2365-2381. doi: 10.3934/dcdsb.2019099
References:
[1]

M. AdimyF. CrausteM. L. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math., 70 (2010), 1611-1633.  doi: 10.1137/080742713.  Google Scholar

[2]

M. AdimyF. Crauste and C. Marquet, Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, Nonlinear Analysis: Real World, 11 (2010), 2913-2929.  doi: 10.1016/j.nonrwa.2009.11.001.  Google Scholar

[3]

B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Taylor & Francis Group, Abingdon UK, 2014. Google Scholar

[4]

J. BanasiakK. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model, Acta Appl. Math., 119 (2012), 149-166.  doi: 10.1007/s10440-011-9666-y.  Google Scholar

[5]

F. J. Burns and I. F. Tannock, On the existence of a $G_0$ phase in the cell cycle, Cell Tissue Kinet., 3 (1970), 321-334.  doi: 10.1111/j.1365-2184.1970.tb00340.x.  Google Scholar

[6]

R. CrabbM. C. Mackey and A. Rey, Propagating fronts, chaos and multistability in a cell replication model, Chaos, 6 (1996), 477-492.  doi: 10.1063/1.166195.  Google Scholar

[7]

F. CrausteI. DeminO. Gandrillon and V. Volpert, Mathematical study of feedback control roles and relevance in stress erythropoiesis, J.Theor. Biology, 263 (2010), 303-316.  doi: 10.1016/j.jtbi.2009.12.026.  Google Scholar

[8]

O. DiekmannH. J. A. M. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biology, 19 (1984), 227-248.  doi: 10.1007/BF00277748.  Google Scholar

[9]

S. FischerP. Kurbatova and N. Bessonov, Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage, J. Theor. Biology, 298 (2012), 92-106.  doi: 10.1016/j.jtbi.2012.01.002.  Google Scholar

[10]

H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math., 51 (1990), 155-166.  doi: 10.4064/ap-51-1-155-166.  Google Scholar

[11]

M. Gyllenberg and H. J. A. M. Heijmans, An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. Anal., 18 (1987), 74-88.  doi: 10.1137/0518006.  Google Scholar

[12] P. C. L. John (ed.), The Cell Cycle, Cambridge University Press, London, 1981.   Google Scholar
[13]

A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol., 19 (1984), 43-62.  doi: 10.1007/BF00275930.  Google Scholar

[14]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Ⅱ edition, Springer Applied Mathematical Sciences, 97, New York, 1994. doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[15]

A. LasotaM. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol., 30 (1992), 775-800.  doi: 10.1007/BF00176455.  Google Scholar

[16]

J. L. Lebowitz and S. L. Rubinow, A theory for the age and generation time distribution of microbial population, J. Math. Biol., 1 (1974), 17-36.  doi: 10.1007/BF02339486.  Google Scholar

[17]

K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Pol. Ac.: Math., 37 (1989), 229-235.   Google Scholar

[18]

T. LuzyaninaD. Roose and G. Bocharov, Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data, J. Math. Biology, 59 (2009), 581-603.  doi: 10.1007/s00285-008-0244-5.  Google Scholar

[19]

M.C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 33 (1994), 89-109.  doi: 10.1007/BF00160175.  Google Scholar

[20]

M. C. Mackey and M. Tyran-Kamińska, Dynamics and density evolution in piecewise deterministic growth processes, Ann. Polon. Math., 94 (2008), 111-129.  doi: 10.4064/ap94-2-2.  Google Scholar

[21] D. O. Morgan, The Cell Cycle: Principles of Control, New Science Press, London, 2007.   Google Scholar
[22]

K. Pichór, Asymptotic behaviour of a structured population model, Mathematical and Computer Modelling, 57 (2013), 1240-1249.  doi: 10.1016/j.mcm.2012.10.027.  Google Scholar

[23]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.  doi: 10.1006/jmaa.2000.6968.  Google Scholar

[24]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl., 436 (2016), 305-321.  doi: 10.1016/j.jmaa.2015.12.009.  Google Scholar

[25]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic semigroups and applications, Stochastics and Dynamics, 18 (2018), 1850001, 18 pp. doi: 10.1142/S0219493718500016.  Google Scholar

[26]

K. Pichór and R. Rudnicki, Stability of stochastic semigroups and applications to Stein's neuronal model, Discrete Contin. Dyn. Syst. B, 23 (2018), 377-385.  doi: 10.3934/dcdsb.2018026.  Google Scholar

[27]

L. Pujo-Menjouet, Blood cell dynamics: Half of a century of modelling, Math. Model. Nat. Phenom., 11 (2016), 92-115.  doi: 10.1051/mmnp/201611106.  Google Scholar

[28]

L. Pujo-Menjouet and R. Rudnicki, Global stability of cellular populations with unequal division, Canad. Appl. Math. Quart., 8 (2000), 185-202.  doi: 10.1216/camq/1032375042.  Google Scholar

[29]

M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199.  doi: 10.1016/0022-5193(83)90024-3.  Google Scholar

[30]

S. I. Rubinow, A maturity time representation for cell populations, Biophy. J., 8 (1968), 1055-1073.  doi: 10.1016/S0006-3495(68)86539-7.  Google Scholar

[31]

R. Rudnicki, Stability in L1 of some integral operators, Integr Equat. Oper. Th., 24 (1996), 320-327.  doi: 10.1007/BF01204604.  Google Scholar

[32]

R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds.), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255–318. doi: 10.1007/978-3-319-11322-7_6.  Google Scholar

[33]

R. Rudnicki and K. Pichór, Markov semigroups and stability of the cell maturation distribution, J. Biol. Systems, 8 (2000), 69-94.   Google Scholar

[34]

R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-61295-9.  Google Scholar

[35]

J. A. Smith and L. Martin, Do cells cycle?, Proc. Natl. Acad. Sci. U.S.A., 70 (1973), 1263-1267.   Google Scholar

[36]

J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, J. Math. Biol., 23 (1986), 231-246.  doi: 10.1007/BF00276959.  Google Scholar

[37]

J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biology, 26 (1988), 465-475.  doi: 10.1007/BF00276374.  Google Scholar

[38]

H. von Foerster, Some remarks on changing populations, in The Kinetics of Cellular Proliferation, 382–407, Ed. F. Stohlman, Grune and Stratton, New York, 1959. Google Scholar

show all references

References:
[1]

M. AdimyF. CrausteM. L. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math., 70 (2010), 1611-1633.  doi: 10.1137/080742713.  Google Scholar

[2]

M. AdimyF. Crauste and C. Marquet, Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, Nonlinear Analysis: Real World, 11 (2010), 2913-2929.  doi: 10.1016/j.nonrwa.2009.11.001.  Google Scholar

[3]

B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Taylor & Francis Group, Abingdon UK, 2014. Google Scholar

[4]

J. BanasiakK. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model, Acta Appl. Math., 119 (2012), 149-166.  doi: 10.1007/s10440-011-9666-y.  Google Scholar

[5]

F. J. Burns and I. F. Tannock, On the existence of a $G_0$ phase in the cell cycle, Cell Tissue Kinet., 3 (1970), 321-334.  doi: 10.1111/j.1365-2184.1970.tb00340.x.  Google Scholar

[6]

R. CrabbM. C. Mackey and A. Rey, Propagating fronts, chaos and multistability in a cell replication model, Chaos, 6 (1996), 477-492.  doi: 10.1063/1.166195.  Google Scholar

[7]

F. CrausteI. DeminO. Gandrillon and V. Volpert, Mathematical study of feedback control roles and relevance in stress erythropoiesis, J.Theor. Biology, 263 (2010), 303-316.  doi: 10.1016/j.jtbi.2009.12.026.  Google Scholar

[8]

O. DiekmannH. J. A. M. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biology, 19 (1984), 227-248.  doi: 10.1007/BF00277748.  Google Scholar

[9]

S. FischerP. Kurbatova and N. Bessonov, Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage, J. Theor. Biology, 298 (2012), 92-106.  doi: 10.1016/j.jtbi.2012.01.002.  Google Scholar

[10]

H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math., 51 (1990), 155-166.  doi: 10.4064/ap-51-1-155-166.  Google Scholar

[11]

M. Gyllenberg and H. J. A. M. Heijmans, An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. Anal., 18 (1987), 74-88.  doi: 10.1137/0518006.  Google Scholar

[12] P. C. L. John (ed.), The Cell Cycle, Cambridge University Press, London, 1981.   Google Scholar
[13]

A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol., 19 (1984), 43-62.  doi: 10.1007/BF00275930.  Google Scholar

[14]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Ⅱ edition, Springer Applied Mathematical Sciences, 97, New York, 1994. doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[15]

A. LasotaM. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol., 30 (1992), 775-800.  doi: 10.1007/BF00176455.  Google Scholar

[16]

J. L. Lebowitz and S. L. Rubinow, A theory for the age and generation time distribution of microbial population, J. Math. Biol., 1 (1974), 17-36.  doi: 10.1007/BF02339486.  Google Scholar

[17]

K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Pol. Ac.: Math., 37 (1989), 229-235.   Google Scholar

[18]

T. LuzyaninaD. Roose and G. Bocharov, Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data, J. Math. Biology, 59 (2009), 581-603.  doi: 10.1007/s00285-008-0244-5.  Google Scholar

[19]

M.C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 33 (1994), 89-109.  doi: 10.1007/BF00160175.  Google Scholar

[20]

M. C. Mackey and M. Tyran-Kamińska, Dynamics and density evolution in piecewise deterministic growth processes, Ann. Polon. Math., 94 (2008), 111-129.  doi: 10.4064/ap94-2-2.  Google Scholar

[21] D. O. Morgan, The Cell Cycle: Principles of Control, New Science Press, London, 2007.   Google Scholar
[22]

K. Pichór, Asymptotic behaviour of a structured population model, Mathematical and Computer Modelling, 57 (2013), 1240-1249.  doi: 10.1016/j.mcm.2012.10.027.  Google Scholar

[23]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.  doi: 10.1006/jmaa.2000.6968.  Google Scholar

[24]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl., 436 (2016), 305-321.  doi: 10.1016/j.jmaa.2015.12.009.  Google Scholar

[25]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic semigroups and applications, Stochastics and Dynamics, 18 (2018), 1850001, 18 pp. doi: 10.1142/S0219493718500016.  Google Scholar

[26]

K. Pichór and R. Rudnicki, Stability of stochastic semigroups and applications to Stein's neuronal model, Discrete Contin. Dyn. Syst. B, 23 (2018), 377-385.  doi: 10.3934/dcdsb.2018026.  Google Scholar

[27]

L. Pujo-Menjouet, Blood cell dynamics: Half of a century of modelling, Math. Model. Nat. Phenom., 11 (2016), 92-115.  doi: 10.1051/mmnp/201611106.  Google Scholar

[28]

L. Pujo-Menjouet and R. Rudnicki, Global stability of cellular populations with unequal division, Canad. Appl. Math. Quart., 8 (2000), 185-202.  doi: 10.1216/camq/1032375042.  Google Scholar

[29]

M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199.  doi: 10.1016/0022-5193(83)90024-3.  Google Scholar

[30]

S. I. Rubinow, A maturity time representation for cell populations, Biophy. J., 8 (1968), 1055-1073.  doi: 10.1016/S0006-3495(68)86539-7.  Google Scholar

[31]

R. Rudnicki, Stability in L1 of some integral operators, Integr Equat. Oper. Th., 24 (1996), 320-327.  doi: 10.1007/BF01204604.  Google Scholar

[32]

R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds.), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255–318. doi: 10.1007/978-3-319-11322-7_6.  Google Scholar

[33]

R. Rudnicki and K. Pichór, Markov semigroups and stability of the cell maturation distribution, J. Biol. Systems, 8 (2000), 69-94.   Google Scholar

[34]

R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-61295-9.  Google Scholar

[35]

J. A. Smith and L. Martin, Do cells cycle?, Proc. Natl. Acad. Sci. U.S.A., 70 (1973), 1263-1267.   Google Scholar

[36]

J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, J. Math. Biol., 23 (1986), 231-246.  doi: 10.1007/BF00276959.  Google Scholar

[37]

J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biology, 26 (1988), 465-475.  doi: 10.1007/BF00276374.  Google Scholar

[38]

H. von Foerster, Some remarks on changing populations, in The Kinetics of Cellular Proliferation, 382–407, Ed. F. Stohlman, Grune and Stratton, New York, 1959. Google Scholar

Figure 1.  Evolution of maturity of a mother cell: (1) – resting phase; (2) – proliferating phase and a daughter cell: (3) – resting phase; (4) – proliferating phase
Figure 2.  The set $ X $
[1]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[2]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[3]

Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163

[4]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[5]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[6]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[7]

Paolo Ubezio. Unraveling the complexity of cell cycle effects of anticancer drugs in cell populations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 323-335. doi: 10.3934/dcdsb.2004.4.323

[8]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[9]

Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251

[10]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[11]

Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473

[12]

Richard L Buckalew. Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 867-881. doi: 10.3934/dcdsb.2014.19.867

[13]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[14]

Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control & Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049

[15]

Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567

[16]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[17]

John A. D. Appleby, Jian Cheng, Alexandra Rodkina. Characterisation of the asymptotic behaviour of scalar linear differential equations with respect to a fading stochastic perturbation. Conference Publications, 2011, 2011 (Special) : 79-90. doi: 10.3934/proc.2011.2011.79

[18]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[19]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[20]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (39)
  • HTML views (281)
  • Cited by (0)

Other articles
by authors

[Back to Top]