• Previous Article
    Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability
  • DCDS-B Home
  • This Issue
  • Next Article
    Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics
May  2019, 24(5): 2365-2381. doi: 10.3934/dcdsb.2019099

Applications of stochastic semigroups to cell cycle models

1. 

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

2. 

Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland

* Corresponding author: Ryszard Rudnicki

Received  December 2017 Revised  January 2019 Published  March 2019

Fund Project: This research was partially supported by the National Science Centre (Poland) Grant No. 2017/27/B/ST1/00100

We consider a generational and continuous-time two-phase model of the cell cycle. The first model is given by a stochastic operator, and the second by a piecewise deterministic Markov process. In the second case we also introduce a stochastic semigroup which describes the evolution of densities of the process. We study long-time behaviour of these models. In particular we prove theorems on asymptotic stability and sweeping. We also show the relations between both models.

Citation: Katarzyna Pichór, Ryszard Rudnicki. Applications of stochastic semigroups to cell cycle models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2365-2381. doi: 10.3934/dcdsb.2019099
References:
[1]

M. AdimyF. CrausteM. L. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math., 70 (2010), 1611-1633. doi: 10.1137/080742713. Google Scholar

[2]

M. AdimyF. Crauste and C. Marquet, Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, Nonlinear Analysis: Real World, 11 (2010), 2913-2929. doi: 10.1016/j.nonrwa.2009.11.001. Google Scholar

[3]

B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Taylor & Francis Group, Abingdon UK, 2014.Google Scholar

[4]

J. BanasiakK. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model, Acta Appl. Math., 119 (2012), 149-166. doi: 10.1007/s10440-011-9666-y. Google Scholar

[5]

F. J. Burns and I. F. Tannock, On the existence of a $G_0$ phase in the cell cycle, Cell Tissue Kinet., 3 (1970), 321-334. doi: 10.1111/j.1365-2184.1970.tb00340.x. Google Scholar

[6]

R. CrabbM. C. Mackey and A. Rey, Propagating fronts, chaos and multistability in a cell replication model, Chaos, 6 (1996), 477-492. doi: 10.1063/1.166195. Google Scholar

[7]

F. CrausteI. DeminO. Gandrillon and V. Volpert, Mathematical study of feedback control roles and relevance in stress erythropoiesis, J.Theor. Biology, 263 (2010), 303-316. doi: 10.1016/j.jtbi.2009.12.026. Google Scholar

[8]

O. DiekmannH. J. A. M. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biology, 19 (1984), 227-248. doi: 10.1007/BF00277748. Google Scholar

[9]

S. FischerP. Kurbatova and N. Bessonov, Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage, J. Theor. Biology, 298 (2012), 92-106. doi: 10.1016/j.jtbi.2012.01.002. Google Scholar

[10]

H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math., 51 (1990), 155-166. doi: 10.4064/ap-51-1-155-166. Google Scholar

[11]

M. Gyllenberg and H. J. A. M. Heijmans, An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. Anal., 18 (1987), 74-88. doi: 10.1137/0518006. Google Scholar

[12] P. C. L. John (ed.), The Cell Cycle, Cambridge University Press, London, 1981. Google Scholar
[13]

A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol., 19 (1984), 43-62. doi: 10.1007/BF00275930. Google Scholar

[14]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Ⅱ edition, Springer Applied Mathematical Sciences, 97, New York, 1994. doi: 10.1007/978-1-4612-4286-4. Google Scholar

[15]

A. LasotaM. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol., 30 (1992), 775-800. doi: 10.1007/BF00176455. Google Scholar

[16]

J. L. Lebowitz and S. L. Rubinow, A theory for the age and generation time distribution of microbial population, J. Math. Biol., 1 (1974), 17-36. doi: 10.1007/BF02339486. Google Scholar

[17]

K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Pol. Ac.: Math., 37 (1989), 229-235. Google Scholar

[18]

T. LuzyaninaD. Roose and G. Bocharov, Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data, J. Math. Biology, 59 (2009), 581-603. doi: 10.1007/s00285-008-0244-5. Google Scholar

[19]

M.C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 33 (1994), 89-109. doi: 10.1007/BF00160175. Google Scholar

[20]

M. C. Mackey and M. Tyran-Kamińska, Dynamics and density evolution in piecewise deterministic growth processes, Ann. Polon. Math., 94 (2008), 111-129. doi: 10.4064/ap94-2-2. Google Scholar

[21] D. O. Morgan, The Cell Cycle: Principles of Control, New Science Press, London, 2007. Google Scholar
[22]

K. Pichór, Asymptotic behaviour of a structured population model, Mathematical and Computer Modelling, 57 (2013), 1240-1249. doi: 10.1016/j.mcm.2012.10.027. Google Scholar

[23]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685. doi: 10.1006/jmaa.2000.6968. Google Scholar

[24]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl., 436 (2016), 305-321. doi: 10.1016/j.jmaa.2015.12.009. Google Scholar

[25]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic semigroups and applications, Stochastics and Dynamics, 18 (2018), 1850001, 18 pp. doi: 10.1142/S0219493718500016. Google Scholar

[26]

K. Pichór and R. Rudnicki, Stability of stochastic semigroups and applications to Stein's neuronal model, Discrete Contin. Dyn. Syst. B, 23 (2018), 377-385. doi: 10.3934/dcdsb.2018026. Google Scholar

[27]

L. Pujo-Menjouet, Blood cell dynamics: Half of a century of modelling, Math. Model. Nat. Phenom., 11 (2016), 92-115. doi: 10.1051/mmnp/201611106. Google Scholar

[28]

L. Pujo-Menjouet and R. Rudnicki, Global stability of cellular populations with unequal division, Canad. Appl. Math. Quart., 8 (2000), 185-202. doi: 10.1216/camq/1032375042. Google Scholar

[29]

M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3. Google Scholar

[30]

S. I. Rubinow, A maturity time representation for cell populations, Biophy. J., 8 (1968), 1055-1073. doi: 10.1016/S0006-3495(68)86539-7. Google Scholar

[31]

R. Rudnicki, Stability in L1 of some integral operators, Integr Equat. Oper. Th., 24 (1996), 320-327. doi: 10.1007/BF01204604. Google Scholar

[32]

R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds.), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255–318. doi: 10.1007/978-3-319-11322-7_6. Google Scholar

[33]

R. Rudnicki and K. Pichór, Markov semigroups and stability of the cell maturation distribution, J. Biol. Systems, 8 (2000), 69-94. Google Scholar

[34]

R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-61295-9. Google Scholar

[35]

J. A. Smith and L. Martin, Do cells cycle?, Proc. Natl. Acad. Sci. U.S.A., 70 (1973), 1263-1267. Google Scholar

[36]

J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, J. Math. Biol., 23 (1986), 231-246. doi: 10.1007/BF00276959. Google Scholar

[37]

J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biology, 26 (1988), 465-475. doi: 10.1007/BF00276374. Google Scholar

[38]

H. von Foerster, Some remarks on changing populations, in The Kinetics of Cellular Proliferation, 382–407, Ed. F. Stohlman, Grune and Stratton, New York, 1959.Google Scholar

show all references

References:
[1]

M. AdimyF. CrausteM. L. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math., 70 (2010), 1611-1633. doi: 10.1137/080742713. Google Scholar

[2]

M. AdimyF. Crauste and C. Marquet, Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, Nonlinear Analysis: Real World, 11 (2010), 2913-2929. doi: 10.1016/j.nonrwa.2009.11.001. Google Scholar

[3]

B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Taylor & Francis Group, Abingdon UK, 2014.Google Scholar

[4]

J. BanasiakK. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model, Acta Appl. Math., 119 (2012), 149-166. doi: 10.1007/s10440-011-9666-y. Google Scholar

[5]

F. J. Burns and I. F. Tannock, On the existence of a $G_0$ phase in the cell cycle, Cell Tissue Kinet., 3 (1970), 321-334. doi: 10.1111/j.1365-2184.1970.tb00340.x. Google Scholar

[6]

R. CrabbM. C. Mackey and A. Rey, Propagating fronts, chaos and multistability in a cell replication model, Chaos, 6 (1996), 477-492. doi: 10.1063/1.166195. Google Scholar

[7]

F. CrausteI. DeminO. Gandrillon and V. Volpert, Mathematical study of feedback control roles and relevance in stress erythropoiesis, J.Theor. Biology, 263 (2010), 303-316. doi: 10.1016/j.jtbi.2009.12.026. Google Scholar

[8]

O. DiekmannH. J. A. M. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biology, 19 (1984), 227-248. doi: 10.1007/BF00277748. Google Scholar

[9]

S. FischerP. Kurbatova and N. Bessonov, Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage, J. Theor. Biology, 298 (2012), 92-106. doi: 10.1016/j.jtbi.2012.01.002. Google Scholar

[10]

H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math., 51 (1990), 155-166. doi: 10.4064/ap-51-1-155-166. Google Scholar

[11]

M. Gyllenberg and H. J. A. M. Heijmans, An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. Anal., 18 (1987), 74-88. doi: 10.1137/0518006. Google Scholar

[12] P. C. L. John (ed.), The Cell Cycle, Cambridge University Press, London, 1981. Google Scholar
[13]

A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol., 19 (1984), 43-62. doi: 10.1007/BF00275930. Google Scholar

[14]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Ⅱ edition, Springer Applied Mathematical Sciences, 97, New York, 1994. doi: 10.1007/978-1-4612-4286-4. Google Scholar

[15]

A. LasotaM. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol., 30 (1992), 775-800. doi: 10.1007/BF00176455. Google Scholar

[16]

J. L. Lebowitz and S. L. Rubinow, A theory for the age and generation time distribution of microbial population, J. Math. Biol., 1 (1974), 17-36. doi: 10.1007/BF02339486. Google Scholar

[17]

K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Pol. Ac.: Math., 37 (1989), 229-235. Google Scholar

[18]

T. LuzyaninaD. Roose and G. Bocharov, Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data, J. Math. Biology, 59 (2009), 581-603. doi: 10.1007/s00285-008-0244-5. Google Scholar

[19]

M.C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 33 (1994), 89-109. doi: 10.1007/BF00160175. Google Scholar

[20]

M. C. Mackey and M. Tyran-Kamińska, Dynamics and density evolution in piecewise deterministic growth processes, Ann. Polon. Math., 94 (2008), 111-129. doi: 10.4064/ap94-2-2. Google Scholar

[21] D. O. Morgan, The Cell Cycle: Principles of Control, New Science Press, London, 2007. Google Scholar
[22]

K. Pichór, Asymptotic behaviour of a structured population model, Mathematical and Computer Modelling, 57 (2013), 1240-1249. doi: 10.1016/j.mcm.2012.10.027. Google Scholar

[23]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685. doi: 10.1006/jmaa.2000.6968. Google Scholar

[24]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl., 436 (2016), 305-321. doi: 10.1016/j.jmaa.2015.12.009. Google Scholar

[25]

K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic semigroups and applications, Stochastics and Dynamics, 18 (2018), 1850001, 18 pp. doi: 10.1142/S0219493718500016. Google Scholar

[26]

K. Pichór and R. Rudnicki, Stability of stochastic semigroups and applications to Stein's neuronal model, Discrete Contin. Dyn. Syst. B, 23 (2018), 377-385. doi: 10.3934/dcdsb.2018026. Google Scholar

[27]

L. Pujo-Menjouet, Blood cell dynamics: Half of a century of modelling, Math. Model. Nat. Phenom., 11 (2016), 92-115. doi: 10.1051/mmnp/201611106. Google Scholar

[28]

L. Pujo-Menjouet and R. Rudnicki, Global stability of cellular populations with unequal division, Canad. Appl. Math. Quart., 8 (2000), 185-202. doi: 10.1216/camq/1032375042. Google Scholar

[29]

M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3. Google Scholar

[30]

S. I. Rubinow, A maturity time representation for cell populations, Biophy. J., 8 (1968), 1055-1073. doi: 10.1016/S0006-3495(68)86539-7. Google Scholar

[31]

R. Rudnicki, Stability in L1 of some integral operators, Integr Equat. Oper. Th., 24 (1996), 320-327. doi: 10.1007/BF01204604. Google Scholar

[32]

R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds.), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255–318. doi: 10.1007/978-3-319-11322-7_6. Google Scholar

[33]

R. Rudnicki and K. Pichór, Markov semigroups and stability of the cell maturation distribution, J. Biol. Systems, 8 (2000), 69-94. Google Scholar

[34]

R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-61295-9. Google Scholar

[35]

J. A. Smith and L. Martin, Do cells cycle?, Proc. Natl. Acad. Sci. U.S.A., 70 (1973), 1263-1267. Google Scholar

[36]

J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, J. Math. Biol., 23 (1986), 231-246. doi: 10.1007/BF00276959. Google Scholar

[37]

J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biology, 26 (1988), 465-475. doi: 10.1007/BF00276374. Google Scholar

[38]

H. von Foerster, Some remarks on changing populations, in The Kinetics of Cellular Proliferation, 382–407, Ed. F. Stohlman, Grune and Stratton, New York, 1959.Google Scholar

Figure 1.  Evolution of maturity of a mother cell: (1) – resting phase; (2) – proliferating phase and a daughter cell: (3) – resting phase; (4) – proliferating phase
Figure 2.  The set $ X $
[1]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[2]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[3]

Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163

[4]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[5]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[6]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[7]

Paolo Ubezio. Unraveling the complexity of cell cycle effects of anticancer drugs in cell populations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 323-335. doi: 10.3934/dcdsb.2004.4.323

[8]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[9]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[10]

Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473

[11]

Richard L Buckalew. Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 867-881. doi: 10.3934/dcdsb.2014.19.867

[12]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[13]

Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567

[14]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[15]

John A. D. Appleby, Jian Cheng, Alexandra Rodkina. Characterisation of the asymptotic behaviour of scalar linear differential equations with respect to a fading stochastic perturbation. Conference Publications, 2011, 2011 (Special) : 79-90. doi: 10.3934/proc.2011.2011.79

[16]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[17]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[18]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

[19]

Gianluca Mola, Noboru Okazawa, Jan Prüss, Tomomi Yokota. Semigroup-theoretic approach to identification of linear diffusion coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 777-790. doi: 10.3934/dcdss.2016028

[20]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (30)
  • HTML views (170)
  • Cited by (0)

Other articles
by authors

[Back to Top]