[1]
|
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Mathématiques & Applications, vol. 40, Springer Verlag, Paris, 2003.
|
[2]
|
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007.
|
[3]
|
A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975.
|
[4]
|
U. Felgenhauer, L. Poggiolini and G. Stefani, Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour, in: 50 Years of Optimal Control, A. Ioffe, K. Malanowski, F. Tröltzsch, Eds., Control and Cybernetics, 38 (2009), 1305–1325.
|
[5]
|
R. A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009), 508-509.
doi: 10.1038/459508a.
|
[6]
|
J. H. Goldie, Drug resistance in cancer: A perspective, Cancer and Metastasis Review, 20 (2001), 63-68.
|
[7]
|
J. H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65 (1983), 291-307.
|
[8]
|
R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66 (2006), 1033-1039.
doi: 10.1158/0008-5472.CAN-05-3077.
|
[9]
|
J. Greene, O. Lavi, M. M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull. Math. Biol., 74 (2014), 627-653.
doi: 10.1007/s11538-014-9936-8.
|
[10]
|
P. Hahnfeldt and L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations, Radiation Research, 150 (1998), 681-687.
doi: 10.2307/3579891.
|
[11]
|
P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003), 545-554.
doi: 10.1006/jtbi.2003.3162.
|
[12]
|
O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73 (2013), 7168-7175.
doi: 10.1158/0008-5472.CAN-13-1768.
|
[13]
|
U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578.
doi: 10.3934/mbe.2005.2.561.
|
[14]
|
U. Ledzewicz, K. Bratton and H. Schättler, A 3-compartment model for chemotherapy of heterogeneous tumor populations, Acta Applicandae Matematicae, 135 (2015), 191-207.
doi: 10.1007/s10440-014-9952-6.
|
[15]
|
U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors, J. of Biological Systems, 22 (2014), 177-197.
doi: 10.1142/S0218339014400014.
|
[16]
|
M. Leszczy\'nski, E. Ratajczyk, U. Ledzewicz and H. Schättler, Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics, Opuscula Math., 37 (2017), 403-419.
doi: 10.7494/OpMath.2017.37.3.403.
|
[17]
|
J. S. Li and N. Khaneja, Ensemble control of linear systems, Proc. of the 46th IEEE Conference on Decision and Control, 2007, 3768–3773.
|
[18]
|
J. S. Li and N. Khaneja, Ensemble control of Bloch equations, IEEE Transactions on Automatic Control, 54 (2009), 528-536.
doi: 10.1109/TAC.2009.2012983.
|
[19]
|
D. Liberzon, Calculus of Variations and Optimal Control Theory, Princeton University Press, 2012.
|
[20]
|
A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault and B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399.
doi: 10.1051/m2an/2012031.
|
[21]
|
A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77 (2015), 1-22.
doi: 10.1007/s11538-014-0046-4.
|
[22]
|
L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61 (1977), 1307-1317.
|
[23]
|
L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treatment Reports, 70 (1986), 41–61.
|
[24]
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964.
|
[25]
|
H. Schättler, On classical envelopes in optimal control theory, Proc. of the 49th IEEE Conference on Decision and Control, Atlanta, USA, (2010), 1879–1884.
|
[26]
|
H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, 2012.
doi: 10.1007/978-1-4614-3834-2.
|
[27]
|
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Interdisciplinary Applied Mathematics, vol. 42, Springer, 2015.
doi: 10.1007/978-1-4939-2972-6.
|
[28]
|
A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2000), 375-386.
doi: 10.1016/S0362-546X(01)00184-5.
|
[29]
|
S. Wang and J. S. Li, Fixed-endpoint optimal control of bilinear ensemble systems, SIAM J. Control and Optimization (SICON), 55 (2017), 3039-3065.
doi: 10.1137/15M1044151.
|
[30]
|
S. Wang and H. Schättler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity, Mathematical Biosciences and Engineering - MBE, 13 (2016), 1223-1240.
doi: 10.3934/mbe.2016040.
|