[1]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Mathématiques & Applications, vol. 40, Springer Verlag, Paris, 2003.

[2]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007.

[3]

A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975.

[4]

U. Felgenhauer, L. Poggiolini and G. Stefani, Optimality and stability result for bangbang optimal controls with simple and double switch behaviour, in: 50 Years of Optimal Control, A. Ioffe, K. Malanowski, F. Tröltzsch, Eds., Control and Cybernetics, 38 (2009), 1305–1325.

[5]

R. A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009), 508509.
doi: 10.1038/459508a.

[6]

J. H. Goldie, Drug resistance in cancer: A perspective, Cancer and Metastasis Review, 20 (2001), 6368.

[7]

J. H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65 (1983), 291307.

[8]

R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66 (2006), 10331039.
doi: 10.1158/00085472.CAN053077.

[9]

J. Greene, O. Lavi, M. M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull. Math. Biol., 74 (2014), 627653.
doi: 10.1007/s1153801499368.

[10]

P. Hahnfeldt and L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations, Radiation Research, 150 (1998), 681687.
doi: 10.2307/3579891.

[11]

P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing longterm burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003), 545554.
doi: 10.1006/jtbi.2003.3162.

[12]

O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73 (2013), 71687175.
doi: 10.1158/00085472.CAN131768.

[13]

U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561578.
doi: 10.3934/mbe.2005.2.561.

[14]

U. Ledzewicz, K. Bratton and H. Schättler, A 3compartment model for chemotherapy of heterogeneous tumor populations, Acta Applicandae Matematicae, 135 (2015), 191207.
doi: 10.1007/s1044001499526.

[15]

U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors, J. of Biological Systems, 22 (2014), 177197.
doi: 10.1142/S0218339014400014.

[16]

M. Leszczy\'nski, E. Ratajczyk, U. Ledzewicz and H. Schättler, Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics, Opuscula Math., 37 (2017), 403419.
doi: 10.7494/OpMath.2017.37.3.403.

[17]

J. S. Li and N. Khaneja, Ensemble control of linear systems, Proc. of the 46th IEEE Conference on Decision and Control, 2007, 3768–3773.

[18]

J. S. Li and N. Khaneja, Ensemble control of Bloch equations, IEEE Transactions on Automatic Control, 54 (2009), 528536.
doi: 10.1109/TAC.2009.2012983.

[19]

D. Liberzon, Calculus of Variations and Optimal Control Theory, Princeton University Press, 2012.

[20]

A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault and B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anticancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377399.
doi: 10.1051/m2an/2012031.

[21]

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77 (2015), 122.
doi: 10.1007/s1153801400464.

[22]

L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61 (1977), 13071317.

[23]

L. Norton and R. Simon, The NortonSimon hypothesis revisited, Cancer Treatment Reports, 70 (1986), 41–61.

[24]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964.

[25]

H. Schättler, On classical envelopes in optimal control theory, Proc. of the 49th IEEE Conference on Decision and Control, Atlanta, USA, (2010), 1879–1884.

[26]

H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, 2012.
doi: 10.1007/9781461438342.

[27]

H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Interdisciplinary Applied Mathematics, vol. 42, Springer, 2015.
doi: 10.1007/9781493929726.

[28]

A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2000), 375386.
doi: 10.1016/S0362546X(01)001845.

[29]

S. Wang and J. S. Li, Fixedendpoint optimal control of bilinear ensemble systems, SIAM J. Control and Optimization (SICON), 55 (2017), 30393065.
doi: 10.1137/15M1044151.

[30]

S. Wang and H. Schättler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity, Mathematical Biosciences and Engineering  MBE, 13 (2016), 12231240.
doi: 10.3934/mbe.2016040.
