• Previous Article
    Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense
  • DCDS-B Home
  • This Issue
  • Next Article
    Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations
October  2019, 24(10): 5695-5707. doi: 10.3934/dcdsb.2019102

Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions

1. 

Zentrum Mathematik, Technische Universität Müenchen, Boltzmannstr. 3, 85748 Garching, Germany

2. 

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Cd. de México

* Corresponding author: perez-velazquez@mym.iimas.unam.mx

Received  April 2018 Revised  November 2018 Published  June 2019

We prove existence and uniqueness of weak and classical solutions to certain semi-linear parabolic systems with Robin boundary conditions using the coupled upper-lower solution approach. Our interest lies in cross-dependencies on the gradient parts of the reaction term, which prevents the straight-forward application of standard theorems. Such cross-dependencies emerge e.g. in a model describing evolution of bacterial quorum sensing, but are interesting also in a more general context. We show the existence and uniqueness of solutions for this example.

Citation: Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102
References:
[1]

M. AbudiabI. Ahn and L. Li, Upper–lower solutions for nonlinear parabolic systems and their applications, Journal of Mathematical Analysis and Applications, 378 (2011), 620-633.  doi: 10.1016/j.jmaa.2011.01.003.  Google Scholar

[2]

D. BotheA. FischerM. Pierre and G. Rolland, Global well-posedness for a class of reaction–advection–anisotropic-diffusion systems, Journal of Evolution Equations, 17 (2017), 101-130.  doi: 10.1007/s00028-016-0348-0.  Google Scholar

[3]

K. J. BrownP. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, Journal of Differential Equations, 40 (1981), 232-252.  doi: 10.1016/0022-0396(81)90020-6.  Google Scholar

[4]

A. Friedmann, Partial Differential Equations of Parabolic Type, Prentice Hall, 1964.  Google Scholar

[5]

N. Kronik and Y. Cohen, Evolutionary games in space, Mathematical Modelling of Natural Phenomena, 4 (2009), 54-90.  doi: 10.1051/mmnp/20094602.  Google Scholar

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type (Russian), (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968  Google Scholar

[7]

J. Morgan, Global existence for semilinear parabolic systems, SIAM Journal on Mathematical Analysis, 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[8]

I. G. Petrovskii, On the Cauchy problem for systems of linear partial differential equations in the domain of non-analytic functions, Bull. MGU, Sect. A, 1938. Google Scholar

[9]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, volume 258 of Comprehensive Studies in Mathematics, Springer Verlag, 1983.  Google Scholar

[10]

D. Werner, Funktionalanalysis, Third, revised and extended edition. Springer-Verlag, Berlin, 2000.  Google Scholar

show all references

References:
[1]

M. AbudiabI. Ahn and L. Li, Upper–lower solutions for nonlinear parabolic systems and their applications, Journal of Mathematical Analysis and Applications, 378 (2011), 620-633.  doi: 10.1016/j.jmaa.2011.01.003.  Google Scholar

[2]

D. BotheA. FischerM. Pierre and G. Rolland, Global well-posedness for a class of reaction–advection–anisotropic-diffusion systems, Journal of Evolution Equations, 17 (2017), 101-130.  doi: 10.1007/s00028-016-0348-0.  Google Scholar

[3]

K. J. BrownP. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, Journal of Differential Equations, 40 (1981), 232-252.  doi: 10.1016/0022-0396(81)90020-6.  Google Scholar

[4]

A. Friedmann, Partial Differential Equations of Parabolic Type, Prentice Hall, 1964.  Google Scholar

[5]

N. Kronik and Y. Cohen, Evolutionary games in space, Mathematical Modelling of Natural Phenomena, 4 (2009), 54-90.  doi: 10.1051/mmnp/20094602.  Google Scholar

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type (Russian), (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968  Google Scholar

[7]

J. Morgan, Global existence for semilinear parabolic systems, SIAM Journal on Mathematical Analysis, 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[8]

I. G. Petrovskii, On the Cauchy problem for systems of linear partial differential equations in the domain of non-analytic functions, Bull. MGU, Sect. A, 1938. Google Scholar

[9]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, volume 258 of Comprehensive Studies in Mathematics, Springer Verlag, 1983.  Google Scholar

[10]

D. Werner, Funktionalanalysis, Third, revised and extended edition. Springer-Verlag, Berlin, 2000.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[7]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (119)
  • HTML views (229)
  • Cited by (1)

[Back to Top]