• Previous Article
    Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense
  • DCDS-B Home
  • This Issue
  • Next Article
    Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations
October  2019, 24(10): 5695-5707. doi: 10.3934/dcdsb.2019102

Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions

1. 

Zentrum Mathematik, Technische Universität Müenchen, Boltzmannstr. 3, 85748 Garching, Germany

2. 

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Cd. de México

* Corresponding author: perez-velazquez@mym.iimas.unam.mx

Received  April 2018 Revised  November 2018 Published  June 2019

We prove existence and uniqueness of weak and classical solutions to certain semi-linear parabolic systems with Robin boundary conditions using the coupled upper-lower solution approach. Our interest lies in cross-dependencies on the gradient parts of the reaction term, which prevents the straight-forward application of standard theorems. Such cross-dependencies emerge e.g. in a model describing evolution of bacterial quorum sensing, but are interesting also in a more general context. We show the existence and uniqueness of solutions for this example.

Citation: Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102
References:
[1]

M. AbudiabI. Ahn and L. Li, Upper–lower solutions for nonlinear parabolic systems and their applications, Journal of Mathematical Analysis and Applications, 378 (2011), 620-633.  doi: 10.1016/j.jmaa.2011.01.003.  Google Scholar

[2]

D. BotheA. FischerM. Pierre and G. Rolland, Global well-posedness for a class of reaction–advection–anisotropic-diffusion systems, Journal of Evolution Equations, 17 (2017), 101-130.  doi: 10.1007/s00028-016-0348-0.  Google Scholar

[3]

K. J. BrownP. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, Journal of Differential Equations, 40 (1981), 232-252.  doi: 10.1016/0022-0396(81)90020-6.  Google Scholar

[4]

A. Friedmann, Partial Differential Equations of Parabolic Type, Prentice Hall, 1964.  Google Scholar

[5]

N. Kronik and Y. Cohen, Evolutionary games in space, Mathematical Modelling of Natural Phenomena, 4 (2009), 54-90.  doi: 10.1051/mmnp/20094602.  Google Scholar

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type (Russian), (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968  Google Scholar

[7]

J. Morgan, Global existence for semilinear parabolic systems, SIAM Journal on Mathematical Analysis, 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[8]

I. G. Petrovskii, On the Cauchy problem for systems of linear partial differential equations in the domain of non-analytic functions, Bull. MGU, Sect. A, 1938. Google Scholar

[9]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, volume 258 of Comprehensive Studies in Mathematics, Springer Verlag, 1983.  Google Scholar

[10]

D. Werner, Funktionalanalysis, Third, revised and extended edition. Springer-Verlag, Berlin, 2000.  Google Scholar

show all references

References:
[1]

M. AbudiabI. Ahn and L. Li, Upper–lower solutions for nonlinear parabolic systems and their applications, Journal of Mathematical Analysis and Applications, 378 (2011), 620-633.  doi: 10.1016/j.jmaa.2011.01.003.  Google Scholar

[2]

D. BotheA. FischerM. Pierre and G. Rolland, Global well-posedness for a class of reaction–advection–anisotropic-diffusion systems, Journal of Evolution Equations, 17 (2017), 101-130.  doi: 10.1007/s00028-016-0348-0.  Google Scholar

[3]

K. J. BrownP. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, Journal of Differential Equations, 40 (1981), 232-252.  doi: 10.1016/0022-0396(81)90020-6.  Google Scholar

[4]

A. Friedmann, Partial Differential Equations of Parabolic Type, Prentice Hall, 1964.  Google Scholar

[5]

N. Kronik and Y. Cohen, Evolutionary games in space, Mathematical Modelling of Natural Phenomena, 4 (2009), 54-90.  doi: 10.1051/mmnp/20094602.  Google Scholar

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type (Russian), (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968  Google Scholar

[7]

J. Morgan, Global existence for semilinear parabolic systems, SIAM Journal on Mathematical Analysis, 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[8]

I. G. Petrovskii, On the Cauchy problem for systems of linear partial differential equations in the domain of non-analytic functions, Bull. MGU, Sect. A, 1938. Google Scholar

[9]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, volume 258 of Comprehensive Studies in Mathematics, Springer Verlag, 1983.  Google Scholar

[10]

D. Werner, Funktionalanalysis, Third, revised and extended edition. Springer-Verlag, Berlin, 2000.  Google Scholar

[1]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[2]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[3]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[4]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[5]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[8]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[9]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[10]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[12]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[17]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[18]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[19]

Beixiang Fang, Qin Zhao. Uniqueness of steady 1-D shock solutions in a finite nozzle via vanishing viscosity aguments. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021066

[20]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (133)
  • HTML views (254)
  • Cited by (1)

[Back to Top]