doi: 10.3934/dcdsb.2019103

Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

* Corresponding author: Jicheng Liu

Received  May 2018 Revised  September 2018 Published  June 2019

Fund Project: The authors are supported by NSFs of China (No.11271013, 11471340) and the Fundamental Research Funds for the Central Universities, HUST: 2016YXMS003

We provide a more clear technique to deal with general synchronization problems for SDEs, where the multiplicative noise appears nonlinearly. Moreover, convergence rate of synchronization is obtained. A new method employed here is the techniques of moment estimates for general solutions based on the transformation of multi-scales equations. As a by-product, the relationship between general solutions and stationary solutions is constructed.

Citation: Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019103
References:
[1]

V. S. Afraimovich and H. M. Rodrigues, Uniform dissipativeness and synchronization of nonautonomous equations, International Conference on Differential Equations (Lisboa 1995), (1998), 3–17. Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Science and Business Media, 2013.Google Scholar

[3]

S. A. AzzawiJ. Liu and X. Liu, Convergence rate of synchronization of systems with additive noise, Discrete and Continuous Dynamical Systems-Series B, 22 (2017), 227-245. doi: 10.3934/dcdsb.2017012. Google Scholar

[4]

S. A. Azzawi, J. Liu and X. Liu, The synchronization of stochastic differential equations with linear noise, Stochastics and Dynamics, 18 (2018), 1850049, 31pp. doi: 10.1142/S0219493718500491. Google Scholar

[5]

T. CaraballoI. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM Journal on Mathematical Analysis, 38 (2007), 1489-1507. doi: 10.1137/050647281. Google Scholar

[6]

T. Caraballo and P. E. Kloeden, The persistence of synchronization under environmental noise, Proceedings of the Royal Society of London A, 461 (2005), 2257-2267. doi: 10.1098/rspa.2005.1484. Google Scholar

[7]

T. CaraballoP. E. Kloeden and A. Neuenkirch, Synchronization of systems with multiplicative noise, Stochastics and Dynamics, 8 (2008), 139-154. doi: 10.1142/S0219493708002184. Google Scholar

[8]

T. CaraballoP. E. Kloeden and B. Schmalfuss, Exponentially stable stationary solutions for stochastic evolution equations and their pertubation, Applied Mathematics and Optimization, 50 (2004), 183-207. doi: 10.1007/s00245-004-0802-1. Google Scholar

[9]

G. Dimitroff and M. Scheutzow, Attractors and expansion for Brownian flows, Electron. J. Probab., 16 (2011), 1193-1213. doi: 10.1214/EJP.v16-894. Google Scholar

[10]

J. Duan and W. Wei, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, 2014. Google Scholar

[11]

R. Z. Khasminskii, Stochastic Stability of Differential Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0. Google Scholar

[12]

P. E. Kloeden, Synchronization of nonautonomous dynamical systems, Elect. J. Diff. Eqns., 39 (2003), 1-10. Google Scholar

[13]

P. E. Kloeden, Nonautonomous attractors of switching systems, Dynamical Systems, 21 (2006), 209-230. doi: 10.1080/14689360500446262. Google Scholar

[14]

D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Communications in Mathematical Sciences, 8 (2010), 999-1020. Google Scholar

[15]

X. LiuJ. DuanJ. Liu and P. E. Kloeden, Synchronization of systems of Marcus canonical equations driven by $\alpha$-stable noises, Nonlinear Anal: Real World Appl., 11 (2010), 3437-3445. doi: 10.1016/j.nonrwa.2009.12.004. Google Scholar

[16]

Y. LiuX. Wan and E. Wu, Finite time synchronization of Markovian neural networks with proportional delays and discontinuous activations, Nonlinear Analysis: Modeling and Control, 23 (2018), 515-532. Google Scholar

[17]

J. LuD. W. C. Ho and Z. Wang, Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers, IEEE Transactions on Neural Networks, 20 (2009), 1617-1629. Google Scholar

[18]

J. LuD. W. C. Ho and L. Wu, Exponential stabilization of switched stochastic dynamical networks, Nonlinearity, 22 (2009), 889-911. doi: 10.1088/0951-7715/22/4/011. Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, 2$^nd$ edition, Horwood, 2008. doi: 10.1533/9780857099402. Google Scholar

[20] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.
[21]

H. M. Rodrigues, Abstract methods for synchronization and applications, Appl. Anal., 62 (1996), 263-296. doi: 10.1080/00036819608840483. Google Scholar

[22]

B. Schmalfuss, Lyapunov functions and non-trivial stationary solutions of stochastic differential equations, Dynamical Systems, 16 (2001), 303-317. doi: 10.1080/14689360110069439. Google Scholar

[23]

B. Schmalfuss and R. Schneider, Invariant manifolds for random dynamical systems with slow and fast variables, Journal of Dynamics and Differential Equations, 20 (2008), 133-164. doi: 10.1007/s10884-007-9089-7. Google Scholar

[24] S. Strogatz, Sync: The Emerging Science of Spontaneous Order, Hyperion Press, New York, 2003.
[25]

T. Su and X. Yang, Finite-time synchronization of competitive neural networks with mixed delays, Discrete and Continuous Dynamical System-B, 21 (2016), 3655-3667. doi: 10.3934/dcdsb.2016115. Google Scholar

[26]

X. YangJ. Lu and D. W. C. Ho, Synchronization of uncertain hybrid switching and impulsive complex networks, Applied Mathematical Modelling, 59 (2018), 379-392. doi: 10.1016/j.apm.2018.01.046. Google Scholar

[27]

W. Zhang, X. Yang, C. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Transactions on Cybernetics, 2018, 1–6. doi: 10.1109/TCYB.2018.2839109. Google Scholar

[28]

W. ZhangC. Li and T. Huang, Fixed-time synchronization of complex networks with nonidentical nodes and stochastic noise perturbations, Physica A: Statistical Mechanics and its Applications, 492 (2018), 1531-1542. doi: 10.1016/j.physa.2017.11.079. Google Scholar

[29]

C. ZhouW. Zhang and X. Yang, Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Processing Letters, 46 (2017), 271-291. Google Scholar

show all references

References:
[1]

V. S. Afraimovich and H. M. Rodrigues, Uniform dissipativeness and synchronization of nonautonomous equations, International Conference on Differential Equations (Lisboa 1995), (1998), 3–17. Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Science and Business Media, 2013.Google Scholar

[3]

S. A. AzzawiJ. Liu and X. Liu, Convergence rate of synchronization of systems with additive noise, Discrete and Continuous Dynamical Systems-Series B, 22 (2017), 227-245. doi: 10.3934/dcdsb.2017012. Google Scholar

[4]

S. A. Azzawi, J. Liu and X. Liu, The synchronization of stochastic differential equations with linear noise, Stochastics and Dynamics, 18 (2018), 1850049, 31pp. doi: 10.1142/S0219493718500491. Google Scholar

[5]

T. CaraballoI. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM Journal on Mathematical Analysis, 38 (2007), 1489-1507. doi: 10.1137/050647281. Google Scholar

[6]

T. Caraballo and P. E. Kloeden, The persistence of synchronization under environmental noise, Proceedings of the Royal Society of London A, 461 (2005), 2257-2267. doi: 10.1098/rspa.2005.1484. Google Scholar

[7]

T. CaraballoP. E. Kloeden and A. Neuenkirch, Synchronization of systems with multiplicative noise, Stochastics and Dynamics, 8 (2008), 139-154. doi: 10.1142/S0219493708002184. Google Scholar

[8]

T. CaraballoP. E. Kloeden and B. Schmalfuss, Exponentially stable stationary solutions for stochastic evolution equations and their pertubation, Applied Mathematics and Optimization, 50 (2004), 183-207. doi: 10.1007/s00245-004-0802-1. Google Scholar

[9]

G. Dimitroff and M. Scheutzow, Attractors and expansion for Brownian flows, Electron. J. Probab., 16 (2011), 1193-1213. doi: 10.1214/EJP.v16-894. Google Scholar

[10]

J. Duan and W. Wei, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, 2014. Google Scholar

[11]

R. Z. Khasminskii, Stochastic Stability of Differential Equations, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0. Google Scholar

[12]

P. E. Kloeden, Synchronization of nonautonomous dynamical systems, Elect. J. Diff. Eqns., 39 (2003), 1-10. Google Scholar

[13]

P. E. Kloeden, Nonautonomous attractors of switching systems, Dynamical Systems, 21 (2006), 209-230. doi: 10.1080/14689360500446262. Google Scholar

[14]

D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Communications in Mathematical Sciences, 8 (2010), 999-1020. Google Scholar

[15]

X. LiuJ. DuanJ. Liu and P. E. Kloeden, Synchronization of systems of Marcus canonical equations driven by $\alpha$-stable noises, Nonlinear Anal: Real World Appl., 11 (2010), 3437-3445. doi: 10.1016/j.nonrwa.2009.12.004. Google Scholar

[16]

Y. LiuX. Wan and E. Wu, Finite time synchronization of Markovian neural networks with proportional delays and discontinuous activations, Nonlinear Analysis: Modeling and Control, 23 (2018), 515-532. Google Scholar

[17]

J. LuD. W. C. Ho and Z. Wang, Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers, IEEE Transactions on Neural Networks, 20 (2009), 1617-1629. Google Scholar

[18]

J. LuD. W. C. Ho and L. Wu, Exponential stabilization of switched stochastic dynamical networks, Nonlinearity, 22 (2009), 889-911. doi: 10.1088/0951-7715/22/4/011. Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, 2$^nd$ edition, Horwood, 2008. doi: 10.1533/9780857099402. Google Scholar

[20] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.
[21]

H. M. Rodrigues, Abstract methods for synchronization and applications, Appl. Anal., 62 (1996), 263-296. doi: 10.1080/00036819608840483. Google Scholar

[22]

B. Schmalfuss, Lyapunov functions and non-trivial stationary solutions of stochastic differential equations, Dynamical Systems, 16 (2001), 303-317. doi: 10.1080/14689360110069439. Google Scholar

[23]

B. Schmalfuss and R. Schneider, Invariant manifolds for random dynamical systems with slow and fast variables, Journal of Dynamics and Differential Equations, 20 (2008), 133-164. doi: 10.1007/s10884-007-9089-7. Google Scholar

[24] S. Strogatz, Sync: The Emerging Science of Spontaneous Order, Hyperion Press, New York, 2003.
[25]

T. Su and X. Yang, Finite-time synchronization of competitive neural networks with mixed delays, Discrete and Continuous Dynamical System-B, 21 (2016), 3655-3667. doi: 10.3934/dcdsb.2016115. Google Scholar

[26]

X. YangJ. Lu and D. W. C. Ho, Synchronization of uncertain hybrid switching and impulsive complex networks, Applied Mathematical Modelling, 59 (2018), 379-392. doi: 10.1016/j.apm.2018.01.046. Google Scholar

[27]

W. Zhang, X. Yang, C. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Transactions on Cybernetics, 2018, 1–6. doi: 10.1109/TCYB.2018.2839109. Google Scholar

[28]

W. ZhangC. Li and T. Huang, Fixed-time synchronization of complex networks with nonidentical nodes and stochastic noise perturbations, Physica A: Statistical Mechanics and its Applications, 492 (2018), 1531-1542. doi: 10.1016/j.physa.2017.11.079. Google Scholar

[29]

C. ZhouW. Zhang and X. Yang, Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Processing Letters, 46 (2017), 271-291. Google Scholar

[1]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N $. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 449-472. doi: 10.3934/dcdss.2012.5.449

[2]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803

[3]

Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451

[4]

Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200

[5]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[6]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

[7]

Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117

[8]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019135

[9]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[10]

Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69

[11]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[12]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[13]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[14]

Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2019151

[15]

Miroslava Růžičková, Irada Dzhalladova, Jitka Laitochová, Josef Diblík. Solution to a stochastic pursuit model using moment equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 473-485. doi: 10.3934/dcdsb.2018032

[16]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[17]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[18]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[19]

Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019113

[20]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (17)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]