In this note we prove the existence and uniqueness of local maximal smooth solution of the stochastic simplified Ericksen-Leslie systems modelling the dynamics of nematic liquid crystals under stochastic perturbations.
Citation: |
[1] |
K. Atkinson and W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework, Third edition. Volume 39 of Texts in Applied Mathematics, Springer, Dordrecht, 2009.
doi: 10.1007/978-1-4419-0458-4.![]() ![]() ![]() |
[2] |
R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow,, SIAM J. Numer. Anal., 46 (2008), 1704-1731.
doi: 10.1137/07068254X.![]() ![]() ![]() |
[3] |
H. Bessaih, Z. Brzeźniak and A. Millet, Splitting up method for the 2D stochastic Navier-Stokes equations,, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), 433-470.
doi: 10.1007/s40072-014-0041-7.![]() ![]() ![]() |
[4] |
Z. Brzeźniak, S. Cerrai and M. Freidlin, Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise,, Probab. Theory Related Fields, 162 (2015), 739-793.
doi: 10.1007/s00440-014-0584-6.![]() ![]() ![]() |
[5] |
Z. Brzeźniak and K. D. Elworthy, Stochastic differential equations on Banach manifolds, Methods Funct. Anal. Topology, 6 (2000), 43-84.
![]() ![]() |
[6] |
Z. Brzeźniak and B. Ferrario, A note on stochastic Navier–Stokes equations with not regular multiplicative noise, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 53-80.
doi: 10.1007/s40072-016-0081-2.![]() ![]() ![]() |
[7] |
Z. Brzeźniak, E. Hausenblas and P. Razafimandimby, Some results on the penalised nematic liquid crystals driven by multiplicative noise, arXiv preprint, arXiv: 1310.8641, (2016), 65 pages.
![]() |
[8] |
Z. Brzeźniak and A. Millet, On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold,, Potential Anal., 41 (2014), 269-315.
doi: 10.1007/s11118-013-9369-2.![]() ![]() ![]() |
[9] |
C. Cavaterra, R. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57.
doi: 10.1016/j.jde.2013.03.009.![]() ![]() ![]() |
[10] |
S. Chandrasekhar, Liquid Crystals, Cambridge University Press, 1992.
![]() |
[11] |
B. Climent-Ezquerra, F. Guillén-González and M. A. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys., 57 (2006), 984-998.
doi: 10.1007/s00033-005-0038-1.![]() ![]() ![]() |
[12] |
B. Climent-Ezquerra and F. Guillén-González, A review of mathematical analysis of nematic and smectic-A liquid crystal models, European J. Appl. Math., 25 (2014), 133-153.
doi: 10.1017/S0956792513000338.![]() ![]() ![]() |
[13] |
D. Coutand and S. Shkoller, Well-posdness of the full Ericksen-Leslie Model of nematic liquid crystals,, C.R. Acad. Sci. Paris. Série I, 333 (2001), 919-924.
doi: 10.1016/S0764-4442(01)02161-9.![]() ![]() ![]() |
[14] |
M. Dai and M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in $H^m(R^3)$, SIAM J. Math. Anal., 46 (2014), 3131-3150.
doi: 10.1137/120895342.![]() ![]() ![]() |
[15] |
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993.
![]() |
[16] |
K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Math. Soc. LNS v 70, Cambridge University Press, 1982.
![]() ![]() |
[17] |
J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheology, 5 (1961), 23-34.
doi: 10.1122/1.548883.![]() ![]() ![]() |
[18] |
C. G. Gal and T. T. Medjo, On a regularized family of models for homogeneous incompressible two-phase flows, J. Nonlinear Sci., 24 (2014), 1033-1103.
doi: 10.1007/s00332-014-9211-z.![]() ![]() ![]() |
[19] |
M. Grasselli and H. Wu, Long-time behavior for a hydrodynamic model on nematic liquid crystal flows with asymptotic stabilizing boundary condition and external force, SIAM J. Math. Anal., 45 (2013), 965-1002.
doi: 10.1137/120866476.![]() ![]() ![]() |
[20] |
I. Gyöngy and N. V. Krylov, On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces,, Stochastics, 6 (1981/82), 153-173.
doi: 10.1080/17442508208833202.![]() ![]() ![]() |
[21] |
D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics. European Mathematical Society, Zürich, 2008.
![]() ![]() |
[22] |
M. Hieber, M. Nesensohn, J. Prüss and K. Schade, Dynamics of nematic liquid crystal flows: The quasilinear approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 397-408.
doi: 10.1016/j.anihpc.2014.11.001.![]() ![]() ![]() |
[23] |
M. Hieber and J. Prüss, Dynamics of the Ericksen-Leslie equations with general Leslie stress Ⅰ: the incompressible isotropic case, Math. Ann., 369 (2017), 977-996.
doi: 10.1007/s00208-016-1453-7.![]() ![]() ![]() |
[24] |
M.-C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calculus of Variations, 40 (2011), 15-36.
doi: 10.1007/s00526-010-0331-5.![]() ![]() ![]() |
[25] |
M.-C. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $ \mathbb{R}^2$, Adv. Math., 231 (2012), 1364-1400.
doi: 10.1016/j.aim.2012.06.009.![]() ![]() ![]() |
[26] |
M.-C. Hong, J. Li and Z. Xin, Blow-up criteria of strong solutions to the Ericksen-Leslie system in $ \mathbb{R}^3$, Comm. Partial Differential Equations, 39 (2014), 1284-1328.
doi: 10.1080/03605302.2013.871026.![]() ![]() ![]() |
[27] |
W. Horsthemke and R. Lefever, Noise-induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer Series in Synergetics, 15. Springer-Verlag, Berlin, 1984.
![]() ![]() |
[28] |
J. Huang, F. Lin, Fa nghua and C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $ \mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850.
doi: 10.1007/s00220-014-2079-9.![]() ![]() ![]() |
[29] |
T. Huang, F. Lin, C. Liu and C. Wang, Finite time singularity of the nematic liquid crystal flow in dimension three, Arch. Ration. Mech. Anal., 221 (2016), 1223-1254.
doi: 10.1007/s00205-016-0983-1.![]() ![]() ![]() |
[30] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704.![]() ![]() ![]() |
[31] |
T. Kato and G. Ponce, Well posedness of the Euler and Navier–Stokes equations in the Lebesgues spaces $L^p_s(\mathbb{R}^2)$,, Rev. Mat. Iberoam., 2 (1986), 73-88.
doi: 10.4171/RMI/26.![]() ![]() ![]() |
[32] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990.
![]() ![]() |
[33] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810.![]() ![]() ![]() |
[34] |
F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Communications on Pure and Applied Mathematics, 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503.![]() ![]() ![]() |
[35] |
F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135-156.
doi: 10.1007/s002050000102.![]() ![]() ![]() |
[36] |
F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361, 18 pp.
doi: 10.1098/rsta.2013.0361.![]() ![]() ![]() |
[37] |
F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chinese Annals of Mathematics, Series B., 31 (2010), 921-938.
doi: 10.1007/s11401-010-0612-5.![]() ![]() ![]() |
[38] |
F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.
doi: 10.1002/cpa.21583.![]() ![]() ![]() |
[39] |
F. Lin, J. Lin and C. Wang, Liquid crystals in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x.![]() ![]() ![]() |
[40] |
C. Liu and N. J. Walkington, Approximation of liquid crystal flows,, SIAM J. Numer. Anal., 37 (2000), 725-741.
doi: 10.1137/S0036142997327282.![]() ![]() ![]() |
[41] |
R. Mikulevicius, On strong $ \mathrm{H}^{1}_2$-solutions of stochastic Navier-Stokes equation in a bounded domain, SIAM J. Math. Anal., 41 (2009), 1206-1230.
doi: 10.1137/0807433747.![]() ![]() ![]() |
[42] |
E. M. Ouhabaz, Analysis of Heat Equations on Domains,, Volume 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, 2005.
![]() ![]() |
[43] |
E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127-167.
doi: 10.1080/17442507908833142.![]() ![]() ![]() |
[44] |
E. Pardoux, Equations aux Dérivées Partielles Stochastiques Monotones, Theèse de Doctorat, Université Paris-Sud, 1975.
![]() ![]() |
[45] |
F. Sagués and M. San Miguel, Dynamics of Fréedericksz transition in a fluctuating magnetic field,, Phys. Rev. A., 32 (1985), 1843-1851.
![]() |
[46] |
M. San Miguel, Nematic liquid crystals in a stochastic magnetic field: Spatial correlations, Phys. Rev. A, 32 (1985), 3811-3813.
![]() |
[47] |
S. Shkoller, Well-posedness and global attractors for liquid crystal on Riemannian manifolds,, Communication in Partial Differential Equations, 27 (2002), 1103-1137.
doi: 10.1081/PDE-120004895.![]() ![]() ![]() |
[48] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983.
![]() ![]() |
[49] |
M. Wang and W. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system,, Calc. Var. Partial Differential Equations, 51 (2014), 915-962.
doi: 10.1007/s00526-013-0700-y.![]() ![]() ![]() |
[50] |
W. Wang, P. Zhang and Z. Zhang, Well-posedness of the Ericksen-Leslie system,, Arch. Ration. Mech. Anal., 210 (2013), 837-855.
doi: 10.1007/s00205-013-0659-z.![]() ![]() ![]() |
[51] |
M. Wang, W. Wang and Z. Zhang, On the uniqueness of weak solution for the 2-D Ericksen-Leslie system, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 919-941.
doi: 10.3934/dcdsb.2016.21.919.![]() ![]() ![]() |
[52] |
W. Wang, P. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Comm. Pure Appl. Math., 68 (2015), 1326-1398.
doi: 10.1002/cpa.21549.![]() ![]() ![]() |