• Previous Article
    On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium
  • DCDS-B Home
  • This Issue
  • Next Article
    Modelling the effects of contaminated environments in mainland China on seasonal HFMD infections and the potential benefit of a pulse vaccination strategy
November  2019, 24(11): 5871-5883. doi: 10.3934/dcdsb.2019110

Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion

1. 

Department of Mathematics, Anhui Normal University, Wuhu 241000, China

2. 

School of Mathematics, Southeast University, Nanjing 211189, China

* Corresponding author

Received  September 2018 Published  June 2019

Fund Project: This work is supported by the National Natural Science Foundation of China (11871076).

This paper focuses on the quasi sure exponential stabilization of nonlinear systems. By virtue of exponential martingale inequality under $ G $-framework and intermittent $ G $-Brownian motion (in short, $ G $-ISSs), we establish the sufficient conditions to guarantee quasi surely exponential stability. The efficiency of the proposed results is illustrated by the memristor-based Chua's oscillator.

Citation: Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5871-5883. doi: 10.3934/dcdsb.2019110
References:
[1]

Z. ChenP. Wu and B. Li, A strong law of large numbers for non-additive probabilities, Internat. J. Approx. Reason., 54 (2013), 365-377.  doi: 10.1016/j.ijar.2012.06.002.  Google Scholar

[2]

P. ChengF. Deng and F. Yao, Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects, Nonlinear Anal. Hybrid Syst., 30 (2018), 106-117.  doi: 10.1016/j.nahs.2018.05.003.  Google Scholar

[3]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[4]

L. DenisM. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34 (2011), 139-161.  doi: 10.1007/s11118-010-9185-x.  Google Scholar

[5]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382.  doi: 10.1016/j.spa.2009.05.010.  Google Scholar

[6]

Q. GuoX. Mao and R. Yue, Almost sure exponential stability of stochastic differential delay equations, SIAM J. Control Optim., 54 (2016), 1919-1933.  doi: 10.1137/15M1019465.  Google Scholar

[7]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357.  doi: 10.1016/j.amc.2018.03.020.  Google Scholar

[8]

F. Hu, The modulus of continuity theorem for G-Brownian motion, Comm. Statist. Theory Methods, 46 (2017), 3586-3598.  doi: 10.1080/03610926.2015.1066816.  Google Scholar

[9]

F. HuZ. Chen and P. Wu, A general strong law of large numbers for non-additive probabilities and its applications, Statistics, 50 (2016), 733-749.  doi: 10.1080/02331888.2016.1143473.  Google Scholar

[10]

F. HuZ. Chen and D. Zhang, How big are the increments of G-Brownian motion?, Sci. China Math., 57 (2014), 1687-1700.  doi: 10.1007/s11425-014-4816-0.  Google Scholar

[11]

F. Hu and Z. Chen, General laws of large numbers under sublinear expectations, Comm. Statist. Theory Methods, 45 (2016), 4215-4229.  doi: 10.1080/03610926.2014.917677.  Google Scholar

[12]

F. Hu and D. Zhang, Central limit theorem for capacities, C. R. Math. Acad. Sci. Paris, 348 (2010), 1111-1114.  doi: 10.1016/j.crma.2010.07.026.  Google Scholar

[13]

L. Hu and X. Mao, Almost sure exponential stabilization of stochastic systems by state feedback control, Automatica J. IFAC., 44 (2008), 465-471.  doi: 10.1016/j.automatica.2007.05.027.  Google Scholar

[14]

C. HuJ. YuH. Jiang and Z. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23 (2010), 2369-2391.  doi: 10.1088/0951-7715/23/10/002.  Google Scholar

[15]

X. LiX. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion, J. Math. Anal. Appl., 439 (2016), 235-255.  doi: 10.1016/j.jmaa.2016.02.042.  Google Scholar

[16]

X. Mao, stochastic stabilization and destabilization, Syst. Control Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[17]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. ⅹⅷ+422 pp. ISBN: 978-1-904275-34-3. doi: 10.1533/9780857099402.  Google Scholar

[18]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, System Control Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Autom. Control, 61 (2016), 1619-1624.  doi: 10.1109/TAC.2015.2471696.  Google Scholar

[21]

S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stochastic Analysis and Applications, in: Abel Symp., Springer, Berlin, 2 (2007), 541–567. doi: 10.1007/978-3-540-70847-6_25.  Google Scholar

[22]

Y. RenW. Yin and D. Zhu, Exponential stability of SDEs driven by G-Brownian motion with delayed impulsive effects: average impulsive interval approach, Discrete Conti. Dyn. Syst. Ser–B., 23 (2018), 3347-3360.  doi: 10.3934/dcdsb.2018248.  Google Scholar

[23]

Y. RenX. Jia and L. Hu, Exponential stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion, Discrete Conti. Dyn. Syst. Ser–B., 20 (2017), 2157-2169.  doi: 10.3934/dcdsb.2015.20.2157.  Google Scholar

[24]

M. Song and X. Mao, Almost sure exponential stability of hybrid stochastic functional differential equations, J. Math. Anal. Appl., 458 (2018), 1390-1408.  doi: 10.1016/j.jmaa.2017.10.042.  Google Scholar

[25]

F. WuX. Mao and S. Hu, Stochastic suppression and stabilization of functional differential equations, System Control Lett., 59 (2010), 745-753.  doi: 10.1016/j.sysconle.2010.08.011.  Google Scholar

[26]

F. WuX. Mao and P. E. Kloeden, Almost sure exponential stability of the Euler-Maruyama approximations for stochastic functional differential equations, Random Oper. Stoch. Equ., 19 (2011), 165-186.  doi: 10.1515/ROSE.2011.010.  Google Scholar

[27]

S. YangC. Li and T. Huang, Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control, Neural Networks, 75 (2016), 162-172.  doi: 10.1016/j.neunet.2015.12.003.  Google Scholar

[28]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by G-Brownian motion, Appl. Math. Letter., 25 (2012), 1906-1910.  doi: 10.1016/j.aml.2012.02.063.  Google Scholar

[29]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[30]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566.  doi: 10.1016/j.jfranklin.2017.08.007.  Google Scholar

show all references

References:
[1]

Z. ChenP. Wu and B. Li, A strong law of large numbers for non-additive probabilities, Internat. J. Approx. Reason., 54 (2013), 365-377.  doi: 10.1016/j.ijar.2012.06.002.  Google Scholar

[2]

P. ChengF. Deng and F. Yao, Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects, Nonlinear Anal. Hybrid Syst., 30 (2018), 106-117.  doi: 10.1016/j.nahs.2018.05.003.  Google Scholar

[3]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[4]

L. DenisM. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34 (2011), 139-161.  doi: 10.1007/s11118-010-9185-x.  Google Scholar

[5]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382.  doi: 10.1016/j.spa.2009.05.010.  Google Scholar

[6]

Q. GuoX. Mao and R. Yue, Almost sure exponential stability of stochastic differential delay equations, SIAM J. Control Optim., 54 (2016), 1919-1933.  doi: 10.1137/15M1019465.  Google Scholar

[7]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357.  doi: 10.1016/j.amc.2018.03.020.  Google Scholar

[8]

F. Hu, The modulus of continuity theorem for G-Brownian motion, Comm. Statist. Theory Methods, 46 (2017), 3586-3598.  doi: 10.1080/03610926.2015.1066816.  Google Scholar

[9]

F. HuZ. Chen and P. Wu, A general strong law of large numbers for non-additive probabilities and its applications, Statistics, 50 (2016), 733-749.  doi: 10.1080/02331888.2016.1143473.  Google Scholar

[10]

F. HuZ. Chen and D. Zhang, How big are the increments of G-Brownian motion?, Sci. China Math., 57 (2014), 1687-1700.  doi: 10.1007/s11425-014-4816-0.  Google Scholar

[11]

F. Hu and Z. Chen, General laws of large numbers under sublinear expectations, Comm. Statist. Theory Methods, 45 (2016), 4215-4229.  doi: 10.1080/03610926.2014.917677.  Google Scholar

[12]

F. Hu and D. Zhang, Central limit theorem for capacities, C. R. Math. Acad. Sci. Paris, 348 (2010), 1111-1114.  doi: 10.1016/j.crma.2010.07.026.  Google Scholar

[13]

L. Hu and X. Mao, Almost sure exponential stabilization of stochastic systems by state feedback control, Automatica J. IFAC., 44 (2008), 465-471.  doi: 10.1016/j.automatica.2007.05.027.  Google Scholar

[14]

C. HuJ. YuH. Jiang and Z. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23 (2010), 2369-2391.  doi: 10.1088/0951-7715/23/10/002.  Google Scholar

[15]

X. LiX. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion, J. Math. Anal. Appl., 439 (2016), 235-255.  doi: 10.1016/j.jmaa.2016.02.042.  Google Scholar

[16]

X. Mao, stochastic stabilization and destabilization, Syst. Control Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[17]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. ⅹⅷ+422 pp. ISBN: 978-1-904275-34-3. doi: 10.1533/9780857099402.  Google Scholar

[18]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, System Control Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Autom. Control, 61 (2016), 1619-1624.  doi: 10.1109/TAC.2015.2471696.  Google Scholar

[21]

S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stochastic Analysis and Applications, in: Abel Symp., Springer, Berlin, 2 (2007), 541–567. doi: 10.1007/978-3-540-70847-6_25.  Google Scholar

[22]

Y. RenW. Yin and D. Zhu, Exponential stability of SDEs driven by G-Brownian motion with delayed impulsive effects: average impulsive interval approach, Discrete Conti. Dyn. Syst. Ser–B., 23 (2018), 3347-3360.  doi: 10.3934/dcdsb.2018248.  Google Scholar

[23]

Y. RenX. Jia and L. Hu, Exponential stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion, Discrete Conti. Dyn. Syst. Ser–B., 20 (2017), 2157-2169.  doi: 10.3934/dcdsb.2015.20.2157.  Google Scholar

[24]

M. Song and X. Mao, Almost sure exponential stability of hybrid stochastic functional differential equations, J. Math. Anal. Appl., 458 (2018), 1390-1408.  doi: 10.1016/j.jmaa.2017.10.042.  Google Scholar

[25]

F. WuX. Mao and S. Hu, Stochastic suppression and stabilization of functional differential equations, System Control Lett., 59 (2010), 745-753.  doi: 10.1016/j.sysconle.2010.08.011.  Google Scholar

[26]

F. WuX. Mao and P. E. Kloeden, Almost sure exponential stability of the Euler-Maruyama approximations for stochastic functional differential equations, Random Oper. Stoch. Equ., 19 (2011), 165-186.  doi: 10.1515/ROSE.2011.010.  Google Scholar

[27]

S. YangC. Li and T. Huang, Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control, Neural Networks, 75 (2016), 162-172.  doi: 10.1016/j.neunet.2015.12.003.  Google Scholar

[28]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by G-Brownian motion, Appl. Math. Letter., 25 (2012), 1906-1910.  doi: 10.1016/j.aml.2012.02.063.  Google Scholar

[29]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[30]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566.  doi: 10.1016/j.jfranklin.2017.08.007.  Google Scholar

[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[17]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (88)
  • HTML views (250)
  • Cited by (0)

Other articles
by authors

[Back to Top]