-
Previous Article
Almost periodic solutions and stable solutions for stochastic differential equations
- DCDS-B Home
- This Issue
-
Next Article
On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium
Analysis of minimizers of the Lawrence-Doniach energy for superconductors in applied fields
1. | Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA |
2. | Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA |
We analyze minimizers of the Lawrence-Doniach energy for layered superconductors with Josephson constant $ \lambda $ and Ginzburg-Landau parameter $ 1/\epsilon $ in a bounded generalized cylinder $ D = \Omega\times[0, L] $ in $ \mathbb{R}^3 $, where $ \Omega $ is a bounded simply connected Lipschitz domain in $ \mathbb{R}^2 $. Our main result is that in an applied magnetic field $ \vec{H}_{ex} = h_{ex}\vec{e}_{3} $ which is perpendicular to the layers with $ \left|\ln\epsilon\right|\ll h_{ex}\ll\epsilon^{-2} $, the minimum Lawrence-Doniach energy is given by $ \frac{|D|}{2}h_{ex}\ln\frac{1}{\epsilon\sqrt{h_{ex}}}(1+o_{\epsilon, s}(1)) $ as $ \epsilon $ and the interlayer distance $ s $ tend to zero. We also prove estimates on the behavior of the order parameters, induced magnetic field, and vorticity in this regime. Finally, we observe that as a consequence of our results, the same asymptotic formula holds for the minimum anisotropic three-dimensional Ginzburg-Landau energy in $ D $ with anisotropic parameter $ \lambda $ and $ o_{\epsilon, s}(1) $ replaced by $ o_{\epsilon}(1) $.
References:
[1] |
S. Alama, A. J. Berlinsky and L. Bronsard,
Minimizers of the Lawrence-Doniach energy in the small-coupling limit: Finite width samples in a parallel field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 281-312.
doi: 10.1016/S0294-1449(01)00081-6. |
[2] |
S. Alama, L. Bronsard and A. J. Berlinsky,
Periodic vortex lattices for the Lawrence-Doniach model of layered superconductors in a parallel field, Commun. Contemp. Math., 3 (2001), 457-494.
doi: 10.1142/S0219199701000457. |
[3] |
S. Alama, L. Bronsard and E. Sandier,
On the shape of interlayer vortices in the Lawrence-Doniach model, Trans. Amer. Math. Soc., 360 (2008), 1-34.
doi: 10.1090/S0002-9947-07-04188-8. |
[4] |
S. Alama, L. Bronsard and E. Sandier,
On the Lawrence-Doniach model of superconductivity: Magnetic fields parallel to the axes, J. Eur. Math. Soc., 14 (2012), 1825-1857.
doi: 10.4171/JEMS/348. |
[5] |
S. Alama, L. Bronsard and E. Sandier,
Minimizers of the Lawrence-Doniach functional with oblique magnetic fields, Comm. Math. Phys., 310 (2012), 237-266.
doi: 10.1007/s00220-011-1399-2. |
[6] |
G. Alberti, S. Baldo and G. Orlandi,
Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J., 54 (2005), 1411-1472.
doi: 10.1512/iumj.2005.54.2601. |
[7] |
S. Baldo, R. L. Jerrard, G. Orlandi and H. M. Soner,
Convergence of Ginzburg-Landau functionals in three-dimensional superconductivity, Arch. Rational Mech. Anal., 205 (2012), 699-752.
doi: 10.1007/s00205-012-0527-2. |
[8] |
S. Baldo, R. L. Jerrard, G. Orlandi and H. M. Soner,
Vortex density models for superconductivity and superfluidity, Comm. Math. Phys., 318 (2013), 131-171.
doi: 10.1007/s00220-012-1629-2. |
[9] |
P. Bauman and Y. Ko,
Analysis of solutions to the Lawrence-Doniach system for layered superconductors, SIAM J. Math. Anal., 37 (2005), 914-940.
doi: 10.1137/S0036141004444597. |
[10] |
S. J. Chapman, Q. Du and M. D. Gunzburger,
On the Lawrence-Doniach and anisotropic Ginzburg-Landau models for layered superconductors, SIAM J. Appl. Math., 55 (1995), 156-174.
doi: 10.1137/S0036139993256837. |
[11] |
E. B. Fabes, M. Jr Jodeit and N. M. Rivière,
Potential techniques for boundary value problems on ${C}^1$-domains, Acta Math., 141 (1978), 165-186.
doi: 10.1007/BF02545747. |
[12] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, reprint of the 1998 ed., Springer-Verlag, Berlin, 2001. |
[13] |
T. Giorgi and D. Phillips,
The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Review, 44 (2002), 237-256.
doi: 10.1137/S003614450139951. |
[14] |
Y. Iye, How anisotropic are the cuprate high Tc superconductors?, Comments Cond. Mat. Phys., 16 (1992), 89-111. Google Scholar |
[15] |
R. L. Jerrard and H. M. Soner,
Limiting behavior of the Ginzburg-Landau functional, J. Funct. Anal., 192 (2002), 524-561.
doi: 10.1006/jfan.2001.3906. |
[16] |
A. Kachmar,
The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase, J. Funct. Anal., 261 (2011), 3328-3344.
doi: 10.1016/j.jfa.2011.08.002. |
[17] |
G. Peng,
Convergence of the Lawrence-Doniach energy for layered superconductors with magnetic fields near $H_c_1$, SIAM J. Math. Anal., 49 (2017), 1225-1266.
doi: 10.1137/16M1064398. |
[18] |
E. Sandier and S. Serfaty,
On the energy of type-II superconductors in the mixed phase, Rev. Math. Phys., 12 (2000), 1219-1257.
doi: 10.1142/S0129055X00000411. |
[19] |
E. Sandier and S. Serfaty, A rigorous derivation of a free-boundary problem arising in superconductivity, Ann. Sci. École Norm. Sup., 33 (2000), 561–592.
doi: 10.1016/S0012-9593(00)00122-1. |
[20] |
E. Sandier and S. Serfaty,
The decrease of bulk-superconductivity close to the second critical field in the Ginzburg-Landau model, SIAM J. Math. Anal., 34 (2003), 939-956.
doi: 10.1137/S0036141002406084. |
[21] |
E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and Their Applications 70, Birkhäuser, Boston, 2007. |
[22] |
G. Verchota,
Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611.
doi: 10.1016/0022-1236(84)90066-1. |
show all references
References:
[1] |
S. Alama, A. J. Berlinsky and L. Bronsard,
Minimizers of the Lawrence-Doniach energy in the small-coupling limit: Finite width samples in a parallel field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 281-312.
doi: 10.1016/S0294-1449(01)00081-6. |
[2] |
S. Alama, L. Bronsard and A. J. Berlinsky,
Periodic vortex lattices for the Lawrence-Doniach model of layered superconductors in a parallel field, Commun. Contemp. Math., 3 (2001), 457-494.
doi: 10.1142/S0219199701000457. |
[3] |
S. Alama, L. Bronsard and E. Sandier,
On the shape of interlayer vortices in the Lawrence-Doniach model, Trans. Amer. Math. Soc., 360 (2008), 1-34.
doi: 10.1090/S0002-9947-07-04188-8. |
[4] |
S. Alama, L. Bronsard and E. Sandier,
On the Lawrence-Doniach model of superconductivity: Magnetic fields parallel to the axes, J. Eur. Math. Soc., 14 (2012), 1825-1857.
doi: 10.4171/JEMS/348. |
[5] |
S. Alama, L. Bronsard and E. Sandier,
Minimizers of the Lawrence-Doniach functional with oblique magnetic fields, Comm. Math. Phys., 310 (2012), 237-266.
doi: 10.1007/s00220-011-1399-2. |
[6] |
G. Alberti, S. Baldo and G. Orlandi,
Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J., 54 (2005), 1411-1472.
doi: 10.1512/iumj.2005.54.2601. |
[7] |
S. Baldo, R. L. Jerrard, G. Orlandi and H. M. Soner,
Convergence of Ginzburg-Landau functionals in three-dimensional superconductivity, Arch. Rational Mech. Anal., 205 (2012), 699-752.
doi: 10.1007/s00205-012-0527-2. |
[8] |
S. Baldo, R. L. Jerrard, G. Orlandi and H. M. Soner,
Vortex density models for superconductivity and superfluidity, Comm. Math. Phys., 318 (2013), 131-171.
doi: 10.1007/s00220-012-1629-2. |
[9] |
P. Bauman and Y. Ko,
Analysis of solutions to the Lawrence-Doniach system for layered superconductors, SIAM J. Math. Anal., 37 (2005), 914-940.
doi: 10.1137/S0036141004444597. |
[10] |
S. J. Chapman, Q. Du and M. D. Gunzburger,
On the Lawrence-Doniach and anisotropic Ginzburg-Landau models for layered superconductors, SIAM J. Appl. Math., 55 (1995), 156-174.
doi: 10.1137/S0036139993256837. |
[11] |
E. B. Fabes, M. Jr Jodeit and N. M. Rivière,
Potential techniques for boundary value problems on ${C}^1$-domains, Acta Math., 141 (1978), 165-186.
doi: 10.1007/BF02545747. |
[12] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, reprint of the 1998 ed., Springer-Verlag, Berlin, 2001. |
[13] |
T. Giorgi and D. Phillips,
The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Review, 44 (2002), 237-256.
doi: 10.1137/S003614450139951. |
[14] |
Y. Iye, How anisotropic are the cuprate high Tc superconductors?, Comments Cond. Mat. Phys., 16 (1992), 89-111. Google Scholar |
[15] |
R. L. Jerrard and H. M. Soner,
Limiting behavior of the Ginzburg-Landau functional, J. Funct. Anal., 192 (2002), 524-561.
doi: 10.1006/jfan.2001.3906. |
[16] |
A. Kachmar,
The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase, J. Funct. Anal., 261 (2011), 3328-3344.
doi: 10.1016/j.jfa.2011.08.002. |
[17] |
G. Peng,
Convergence of the Lawrence-Doniach energy for layered superconductors with magnetic fields near $H_c_1$, SIAM J. Math. Anal., 49 (2017), 1225-1266.
doi: 10.1137/16M1064398. |
[18] |
E. Sandier and S. Serfaty,
On the energy of type-II superconductors in the mixed phase, Rev. Math. Phys., 12 (2000), 1219-1257.
doi: 10.1142/S0129055X00000411. |
[19] |
E. Sandier and S. Serfaty, A rigorous derivation of a free-boundary problem arising in superconductivity, Ann. Sci. École Norm. Sup., 33 (2000), 561–592.
doi: 10.1016/S0012-9593(00)00122-1. |
[20] |
E. Sandier and S. Serfaty,
The decrease of bulk-superconductivity close to the second critical field in the Ginzburg-Landau model, SIAM J. Math. Anal., 34 (2003), 939-956.
doi: 10.1137/S0036141002406084. |
[21] |
E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and Their Applications 70, Birkhäuser, Boston, 2007. |
[22] |
G. Verchota,
Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611.
doi: 10.1016/0022-1236(84)90066-1. |
[1] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[2] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[3] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[4] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[5] |
Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 |
[6] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[7] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[8] |
Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230 |
[9] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[10] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[11] |
Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020158 |
[12] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]