November  2019, 24(11): 5981-5988. doi: 10.3934/dcdsb.2019116

Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution

Instituto de Matemática e Computação, Universidade Federal de Itajubá, MG, Brazil

Received  October 2018 Published  June 2019

In this paper we consider the heat equation on surfaces of revolution subject to nonlinear Neumann boundary conditions. We provide a sufficient condition on the geometry of the surface in order to ensure the existence of an asymptotically stable nonconstant solution.

Citation: Maicon Sônego. Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5981-5988. doi: 10.3934/dcdsb.2019116
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propation, Partial Differential Equations and Related Topic (A. Dold and B. Eckmann, Eds.), pp. 5–49, Lecture Notes in Mathematics, 446, Springer-Verlag, Berlin/Heidelberg/New York, 1975.  Google Scholar

[2]

C. BandleF. Punzo and A. Tesei, Existence and non-existence of patterns on Riemannian manifolds, J. Math. Anal. Appl., 387 (2012), 33-47.  doi: 10.1016/j.jmaa.2011.08.060.  Google Scholar

[3]

C. BandleP. MastroliaD. D. Monticelli and F. Punzo, On the stability of solutions of semilinear elliptic equations with Robin boundary conditions on Riemannian manifolds, SIAM Journal on Mathematical Analysis, 48 (2016), 122-151.  doi: 10.1137/15M102647X.  Google Scholar

[4]

R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. of Diff. Eqns., 27 (1978), 266-273.  doi: 10.1016/0022-0396(78)90033-5.  Google Scholar

[5]

D. Castorina and M. Sanchón, Regularity of stable solutions to semilinear elliptic equations on Riemannian models, Adv. Nonlinear Anal., 4 (2015), 295-309.  doi: 10.1515/anona-2015-0047.  Google Scholar

[6]

M. Chipot and J. Hale, Stable equilibria with variable diffusion, Contemp. Math., 17 (1983), 209-213.  doi: 10.1090/conm/017/706100.  Google Scholar

[7]

N. Cònsul, On equilibrium solutions of diffusion equations with nonlinear boundary conditions, Z. Angew Math. Phys., 47 (1996), 194-209.  doi: 10.1007/BF00916824.  Google Scholar

[8]

S. DipierroA. Pinamonti and E. Valdinoci, Classification of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature, Advances in Nonlinear Analysis, 8 (2019), 1035-1042.  doi: 10.1515/anona-2018-0013.  Google Scholar

[9]

S. DipierroA Pinamonti and E. Valdinoci, Rigidity results in diffusion Markov triples, J. Funct. Anal, 276 (2019), 785-814.  doi: 10.1016/j.jfa.2018.06.005.  Google Scholar

[10]

A. S. do Nascimento and M. Sônego, Patterns on surfaces of revolution in a diffusion problem with variable diffusivity, Electron. J. Differential Equations, 2014 (2014), 1-13.   Google Scholar

[11]

A. S. do NascimentoJ. Crema and M. Sônego, Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary, Electronic Journal of Differential Equations, 2012 (2012), 1-14.   Google Scholar

[12]

A. S. do Nascimento and M. Sônego, The roles of diffusivity and curvature in patterns on surfaces of revolution, J. Math. Anal. Appl., 412 (2014), 1084-1096.  doi: 10.1016/j.jmaa.2013.10.058.  Google Scholar

[13]

A. C. Gonçalves and A. S. do Nascimento, Instability of elliptic equations on compact Riemannian manifolds with non-negative Ricci curvature, Electronic Journal of Differential Equations, 2010 (2010), 1-18.   Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, 840, 1981.  Google Scholar

[15]

S. Jimbo, On a semilinear diffusion equation on a Riemannian manifold and its stable equilibrium solutions, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 349-352.  doi: 10.3792/pjaa.60.349.  Google Scholar

[16]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. RIMS, Kyoto Univ., 15 (1979), 401-454.  doi: 10.2977/prims/1195188180.  Google Scholar

[17]

M. Mimura, Stationary pattern of some density-dependent diffusive system with competing dynamics, Hiroshima Mad J., 11 (1981), 621-635.  doi: 10.32917/hmj/1206133994.  Google Scholar

[18]

F. Punzo, The existence of patterns on surfaces of revolution without boundary, Nonlinear Analysis: Theory, Methods & Applications, 77 (2013), 94-102.  doi: 10.1016/j.na.2012.09.003.  Google Scholar

[19]

J. Rubinstein and G. Wolansky, Instability results for reaction diffusion equations over surfaces of revolution, J. Math. Anal. Appl., 187 (1994), 485-489.  doi: 10.1006/jmaa.1994.1368.  Google Scholar

[20]

M. Sônego, A note on existence of patterns on surfaces of revolution with nonlinear flux on the boundary, (submitted). Google Scholar

[21]

M. Sônego, Patterns in a balanced bistable equation with heterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521-533.  doi: 10.7153/dea-08-29.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propation, Partial Differential Equations and Related Topic (A. Dold and B. Eckmann, Eds.), pp. 5–49, Lecture Notes in Mathematics, 446, Springer-Verlag, Berlin/Heidelberg/New York, 1975.  Google Scholar

[2]

C. BandleF. Punzo and A. Tesei, Existence and non-existence of patterns on Riemannian manifolds, J. Math. Anal. Appl., 387 (2012), 33-47.  doi: 10.1016/j.jmaa.2011.08.060.  Google Scholar

[3]

C. BandleP. MastroliaD. D. Monticelli and F. Punzo, On the stability of solutions of semilinear elliptic equations with Robin boundary conditions on Riemannian manifolds, SIAM Journal on Mathematical Analysis, 48 (2016), 122-151.  doi: 10.1137/15M102647X.  Google Scholar

[4]

R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. of Diff. Eqns., 27 (1978), 266-273.  doi: 10.1016/0022-0396(78)90033-5.  Google Scholar

[5]

D. Castorina and M. Sanchón, Regularity of stable solutions to semilinear elliptic equations on Riemannian models, Adv. Nonlinear Anal., 4 (2015), 295-309.  doi: 10.1515/anona-2015-0047.  Google Scholar

[6]

M. Chipot and J. Hale, Stable equilibria with variable diffusion, Contemp. Math., 17 (1983), 209-213.  doi: 10.1090/conm/017/706100.  Google Scholar

[7]

N. Cònsul, On equilibrium solutions of diffusion equations with nonlinear boundary conditions, Z. Angew Math. Phys., 47 (1996), 194-209.  doi: 10.1007/BF00916824.  Google Scholar

[8]

S. DipierroA. Pinamonti and E. Valdinoci, Classification of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature, Advances in Nonlinear Analysis, 8 (2019), 1035-1042.  doi: 10.1515/anona-2018-0013.  Google Scholar

[9]

S. DipierroA Pinamonti and E. Valdinoci, Rigidity results in diffusion Markov triples, J. Funct. Anal, 276 (2019), 785-814.  doi: 10.1016/j.jfa.2018.06.005.  Google Scholar

[10]

A. S. do Nascimento and M. Sônego, Patterns on surfaces of revolution in a diffusion problem with variable diffusivity, Electron. J. Differential Equations, 2014 (2014), 1-13.   Google Scholar

[11]

A. S. do NascimentoJ. Crema and M. Sônego, Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary, Electronic Journal of Differential Equations, 2012 (2012), 1-14.   Google Scholar

[12]

A. S. do Nascimento and M. Sônego, The roles of diffusivity and curvature in patterns on surfaces of revolution, J. Math. Anal. Appl., 412 (2014), 1084-1096.  doi: 10.1016/j.jmaa.2013.10.058.  Google Scholar

[13]

A. C. Gonçalves and A. S. do Nascimento, Instability of elliptic equations on compact Riemannian manifolds with non-negative Ricci curvature, Electronic Journal of Differential Equations, 2010 (2010), 1-18.   Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, 840, 1981.  Google Scholar

[15]

S. Jimbo, On a semilinear diffusion equation on a Riemannian manifold and its stable equilibrium solutions, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 349-352.  doi: 10.3792/pjaa.60.349.  Google Scholar

[16]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. RIMS, Kyoto Univ., 15 (1979), 401-454.  doi: 10.2977/prims/1195188180.  Google Scholar

[17]

M. Mimura, Stationary pattern of some density-dependent diffusive system with competing dynamics, Hiroshima Mad J., 11 (1981), 621-635.  doi: 10.32917/hmj/1206133994.  Google Scholar

[18]

F. Punzo, The existence of patterns on surfaces of revolution without boundary, Nonlinear Analysis: Theory, Methods & Applications, 77 (2013), 94-102.  doi: 10.1016/j.na.2012.09.003.  Google Scholar

[19]

J. Rubinstein and G. Wolansky, Instability results for reaction diffusion equations over surfaces of revolution, J. Math. Anal. Appl., 187 (1994), 485-489.  doi: 10.1006/jmaa.1994.1368.  Google Scholar

[20]

M. Sônego, A note on existence of patterns on surfaces of revolution with nonlinear flux on the boundary, (submitted). Google Scholar

[21]

M. Sônego, Patterns in a balanced bistable equation with heterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521-533.  doi: 10.7153/dea-08-29.  Google Scholar

[1]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[2]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[3]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[6]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[10]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[11]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[14]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[15]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[16]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (56)
  • HTML views (257)
  • Cited by (0)

Other articles
by authors

[Back to Top]