[1]
|
A. M. Ashu, Some Properties of Bessel Functions with Applications to Neumann Eigenvalues in the Unit Disc, Bachelor's Theses in Mathematical Sciences, Lund University, 2013.
|
[2]
|
J. Dumais and L. G. Harrison, Whorl morphogenesis in the dasycladalean algae: The pattern formation viewpoint, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 355 (2000), 281-305.
doi: 10.1098/rstb.2000.0565.
|
[3]
|
J. Dumais, K. Serikawa and D. F. Mandoli, Acetabularia: A unicellular model for understanding subcellular localization and morphogenesis during development, Journal of Plant Growth Regulation, 19 (2000), 253-264.
doi: 10.1007/s003440000035.
|
[4]
|
B. Goodwin, How the Leopard Changed Its Spots: The Evolution of Complexity, Princeton University Press, 2001.
|
[5]
|
B. Goodwin, J. Murray and D. Baldwin, Calcium: The elusive morphogen in acetabularia, in Proc. 6th Intern. Symp. on Acetabularia. Belgian Nuclear Center, CEN-SCK Mol, Belgium, (1984), 101–108.
|
[6]
|
B. C. Goodwin and L. Trainor, Tip and whorl morphogenesis in acetabularia by calcium-regulated strain fields, Journal of theoretical biology, 117 (1985), 79-106.
doi: 10.1016/S0022-5193(85)80165-X.
|
[7]
|
L. G. Harrison, Reaction-diffusion theory and intracellular differentiation, International Journal of Plant Sciences, 153 (1992), S76–S85.
doi: 10.1086/297065.
|
[8]
|
L. G. Harrison, J. Snell, R. Verdi, D. Vogt, G. Zeiss and B. R. Green, Hair morphogenesis inacetabularia mediterranea: Temperature-dependent spacing and models of morphogen waves, Protoplasma, 106 (1981), 211-221.
doi: 10.1007/BF01275553.
|
[9]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.
|
[10]
|
T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53, World Scientific, 2005.
doi: 10.1142/9789812701152.
|
[11]
|
T. Ma and S. Wang, Phase Transition Dynamics, Springer, 2014.
doi: 10.1007/978-1-4614-8963-4.
|
[12]
|
L. Martynov, A morphogenetic mechanism involving instability of initial forth, Journal of Theoretical Biology, 52 (1975), 471-480.
doi: 10.1016/0022-5193(75)90013-2.
|
[13]
|
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.
|
[14]
|
C. L. Siegel, Über einige anwendungen diophantischer approximationen, in On Some Applications of Diophantine Approximations, Springer, 2 (2014), 81–138.
|
[15]
|
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge university press, 1995.
|
[16]
|
Y. You, Global dynamics of the brusselator equations, Dynamics of Partial Differential Equations, 4 (2007), 167-196.
doi: 10.4310/DPDE.2007.v4.n2.a4.
|