• Previous Article
    Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential
August  2019, 24(8): 4317-4339. doi: 10.3934/dcdsb.2019121

Approximation of the interface condition for stochastic Stefan-type problems

ETH Zürich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland

Dedicated to Professor Peter E. Kloeden on the occasion of his 70th birthday

Received  March 2018 Revised  October 2018 Published  June 2019

Fund Project: The author acknowledges support by the Swiss National Science Foundation through grant SNF 205121 163425

We consider approximations of the Stefan-type condition by imbalances of volume closely around the inner interface and study convergence of the solutions of the corresponding semilinear stochastic moving boundary problems. After a coordinate transformation, the problems can be reformulated as stochastic evolution equations on fractional power domains of linear operators. Here, the coefficients might fail to have linear growths and might be Lipschitz continuous only on bounded sets. We show continuity properties of the mild solution map in the coefficients and initial data, also incorporating the possibility of explosion of the solutions.

Citation: Marvin S. Müller. Approximation of the interface condition for stochastic Stefan-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4317-4339. doi: 10.3934/dcdsb.2019121
References:
[1]

R. ContA. Kukanov and S. Stoikov, The price impact of order book events, Journal of Financial Econometrics, 12 (2014), 47-88.   Google Scholar

[2]

G. da Prato and J. Zabczyk, A note on stochastic convolution, Stochastic Analysis and Applications, 10 (1992), 143-153.  doi: 10.1080/07362999208809260.  Google Scholar

[3]

K. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, vol. 194, Springer-Verlag, New York, 2000.  Google Scholar

[4]

B. Hambly and J. Kalsi, A reflected moving boundary problem driven by space-time white noise, arXiv: 1805.10166. Google Scholar

[5]

B. Hambly and J. Kalsi, Stefan problems for reflected spdes driven by space-time white noise, arXiv: 1806.04739. Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[7]

M. Keller-Ressel and M. Müller, A Stefan-type stochastic moving boundary problem, Stochastics and Partial Differential Equations: Analysis and Computations, 4 (2016), 746-790.  doi: 10.1007/s40072-016-0076-z.  Google Scholar

[8]

M. Keller-Ressel and M. Müller, Forward-invariance and Wong-Zakai approximation for stochastic moving boundary problems, arXiv: 1801.05203. Google Scholar

[9]

K. KimZ. Zheng and R. Sowers, A stochastic Stefan problem, Journal of Theoretical Probability, 25 (2012), 1040-1080.  doi: 10.1007/s10959-011-0392-1.  Google Scholar

[10]

M. Kunze and J. van Neerven, Continuous dependence on the coefficients and global existence for stochastic reaction diffusion equations, Journal of Differential Equations, 253 (2012), 1036-1068.  doi: 10.1016/j.jde.2012.04.013.  Google Scholar

[11]

A. Lipton, U. Pesavento and M. Sotiropoulos, Trading strategies via book imbalance, Risk, 70. Google Scholar

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, vol. 16, Springer Science & Business Media, 1995.  Google Scholar

[13]

A. Lunardi, Interpolation Theory, , Edizioni della Normale, Pisa, 2009.  Google Scholar

[14]

M. Müller, A stochastic Stefan-type problem under first-order boundary conditions, The Annals of Applied Probability, 28 (2018), 2335-2369.  doi: 10.1214/17-AAP1359.  Google Scholar

[15]

J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Wien. Ber., 98 (1888), 965-983.   Google Scholar

[16]

J. Van NeervenM. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces, Journal of Functional Analysis, 255 (2008), 940-993.  doi: 10.1016/j.jfa.2008.03.015.  Google Scholar

[17]

Z. Zheng, Stochastic Stefan Problems: Existence, Uniqueness, and Modeling of Market Limit Orders, Ph.D thesis, University of Illinois at Urbana-Champaign, 2012.  Google Scholar

show all references

References:
[1]

R. ContA. Kukanov and S. Stoikov, The price impact of order book events, Journal of Financial Econometrics, 12 (2014), 47-88.   Google Scholar

[2]

G. da Prato and J. Zabczyk, A note on stochastic convolution, Stochastic Analysis and Applications, 10 (1992), 143-153.  doi: 10.1080/07362999208809260.  Google Scholar

[3]

K. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, vol. 194, Springer-Verlag, New York, 2000.  Google Scholar

[4]

B. Hambly and J. Kalsi, A reflected moving boundary problem driven by space-time white noise, arXiv: 1805.10166. Google Scholar

[5]

B. Hambly and J. Kalsi, Stefan problems for reflected spdes driven by space-time white noise, arXiv: 1806.04739. Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[7]

M. Keller-Ressel and M. Müller, A Stefan-type stochastic moving boundary problem, Stochastics and Partial Differential Equations: Analysis and Computations, 4 (2016), 746-790.  doi: 10.1007/s40072-016-0076-z.  Google Scholar

[8]

M. Keller-Ressel and M. Müller, Forward-invariance and Wong-Zakai approximation for stochastic moving boundary problems, arXiv: 1801.05203. Google Scholar

[9]

K. KimZ. Zheng and R. Sowers, A stochastic Stefan problem, Journal of Theoretical Probability, 25 (2012), 1040-1080.  doi: 10.1007/s10959-011-0392-1.  Google Scholar

[10]

M. Kunze and J. van Neerven, Continuous dependence on the coefficients and global existence for stochastic reaction diffusion equations, Journal of Differential Equations, 253 (2012), 1036-1068.  doi: 10.1016/j.jde.2012.04.013.  Google Scholar

[11]

A. Lipton, U. Pesavento and M. Sotiropoulos, Trading strategies via book imbalance, Risk, 70. Google Scholar

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, vol. 16, Springer Science & Business Media, 1995.  Google Scholar

[13]

A. Lunardi, Interpolation Theory, , Edizioni della Normale, Pisa, 2009.  Google Scholar

[14]

M. Müller, A stochastic Stefan-type problem under first-order boundary conditions, The Annals of Applied Probability, 28 (2018), 2335-2369.  doi: 10.1214/17-AAP1359.  Google Scholar

[15]

J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Wien. Ber., 98 (1888), 965-983.   Google Scholar

[16]

J. Van NeervenM. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces, Journal of Functional Analysis, 255 (2008), 940-993.  doi: 10.1016/j.jfa.2008.03.015.  Google Scholar

[17]

Z. Zheng, Stochastic Stefan Problems: Existence, Uniqueness, and Modeling of Market Limit Orders, Ph.D thesis, University of Illinois at Urbana-Champaign, 2012.  Google Scholar

[1]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[2]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[3]

Huiling Li, Xiaoliu Wang, Xueyan Lu. A nonlinear Stefan problem with variable exponent and different moving parameters. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019246

[4]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[5]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[6]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[7]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[8]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[9]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019045

[10]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[11]

Lincoln Chayes, Inwon C. Kim. The supercooled Stefan problem in one dimension. Communications on Pure & Applied Analysis, 2012, 11 (2) : 845-859. doi: 10.3934/cpaa.2012.11.845

[12]

Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741

[13]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[14]

Kota Kumazaki, Adrian Muntean. Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks & Heterogeneous Media, 2019, 14 (3) : 445-469. doi: 10.3934/nhm.2019018

[15]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[16]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[17]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[18]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[19]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[20]

Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (26)
  • HTML views (114)
  • Cited by (0)

Other articles
by authors

[Back to Top]