August  2019, 24(8): 4457-4473. doi: 10.3934/dcdsb.2019127

On the eventual stability of asymptotically autonomous systems with constraints

1. 

School of Mathematics, Tianjin University, Tianjin 300072, China

2. 

Department of Mathematics, Civil Aviation University of China, Tianjin 300300, China

3. 

School of Mathematics, Tianjin Normal University, Tianjin 300387, China

* Corresponding author: Desheng Li

Dedicated to Professor Peter E. Kloeden on the occasion of his 70th birthday

Received  October 2018 Revised  January 2019 Published  June 2019

In this paper we first give a criterion on stability of equilibrium solutions for autonomous systems with constraints. Then we discuss the relationship between asymptotic behaviors of an asymptotically autonomous system with constraint and its limit system. Finally as an example, we revisit an extreme ideology model proposed in the literature and give a more detailed description on the dynamics of the system.

Citation: Jinlong Bai, Xuewei Ju, Desheng Li, Xiulian Wang. On the eventual stability of asymptotically autonomous systems with constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4457-4473. doi: 10.3934/dcdsb.2019127
References:
[1]

D. AldilaN. Nuraini and E. Soewono, Mathematical model for the spread of extreme ideology, AIP Conference Proceedings, 1651 (2015), 33-39.  doi: 10.1063/1.4914429.  Google Scholar

[2]

Z. Artstein, Limiting Equations and Stability of Nonautonomous Ordinary Differential Equations, in: J. P. LaSalle (ed.), The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.  Google Scholar

[3]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, Journal of Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[4]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. 1: Theory of Epidemics, Wuerz, Winnipeg, Canada, 1995. Google Scholar

[5]

S. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der mathematischen Wissenschaften, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, Journal of Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[7]

J. Földes and P. Poláčik, Convergence to a steady state for asymptotically autonomous semilinear heat equations on $ \mathbb{R}^{N}$, Journal of Differential Equations, 251 (2011), 1903-1922.  doi: 10.1016/j.jde.2011.04.002.  Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[9]

S. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Analysis, 46 (2001), 675-698.  doi: 10.1016/S0362-546X(00)00145-0.  Google Scholar

[10]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911-918.  doi: 10.1016/j.jmaa.2014.12.069.  Google Scholar

[11]

D. Li and Z. Wang, Local and global dynamic bifurcations of nonlinear evolution equations, Indiana Univ. Math. J., 67 (2018), 583-621.  doi: 10.1512/iumj.2018.67.7292.  Google Scholar

[12]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, J. Math. Anal. Appl., 459 (2018), 1106-1123.  doi: 10.1016/j.jmaa.2017.11.033.  Google Scholar

[13]

K. MischaikowH. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.  doi: 10.1090/S0002-9947-1995-1290727-7.  Google Scholar

[14]

R. Schnaubelt, Asymptotically autonomous parabolic evolution equations, Journal of Evolution Equations, 1 (2001), 19-37.  doi: 10.1007/PL00001363.  Google Scholar

[15]

A. Strauss and J. A. Yorke, Perturbing uniform asymptotically stable nonlinear systems, Journal of Differential Equations, 6 (1969), 452-483.  doi: 10.1016/0022-0396(69)90004-7.  Google Scholar

[16]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[17]

X. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, Comm. Appl. Nonlinear Anal., 3 (1996), 43-66.   Google Scholar

show all references

References:
[1]

D. AldilaN. Nuraini and E. Soewono, Mathematical model for the spread of extreme ideology, AIP Conference Proceedings, 1651 (2015), 33-39.  doi: 10.1063/1.4914429.  Google Scholar

[2]

Z. Artstein, Limiting Equations and Stability of Nonautonomous Ordinary Differential Equations, in: J. P. LaSalle (ed.), The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.  Google Scholar

[3]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, Journal of Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[4]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. 1: Theory of Epidemics, Wuerz, Winnipeg, Canada, 1995. Google Scholar

[5]

S. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der mathematischen Wissenschaften, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, Journal of Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[7]

J. Földes and P. Poláčik, Convergence to a steady state for asymptotically autonomous semilinear heat equations on $ \mathbb{R}^{N}$, Journal of Differential Equations, 251 (2011), 1903-1922.  doi: 10.1016/j.jde.2011.04.002.  Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[9]

S. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Analysis, 46 (2001), 675-698.  doi: 10.1016/S0362-546X(00)00145-0.  Google Scholar

[10]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911-918.  doi: 10.1016/j.jmaa.2014.12.069.  Google Scholar

[11]

D. Li and Z. Wang, Local and global dynamic bifurcations of nonlinear evolution equations, Indiana Univ. Math. J., 67 (2018), 583-621.  doi: 10.1512/iumj.2018.67.7292.  Google Scholar

[12]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, J. Math. Anal. Appl., 459 (2018), 1106-1123.  doi: 10.1016/j.jmaa.2017.11.033.  Google Scholar

[13]

K. MischaikowH. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.  doi: 10.1090/S0002-9947-1995-1290727-7.  Google Scholar

[14]

R. Schnaubelt, Asymptotically autonomous parabolic evolution equations, Journal of Evolution Equations, 1 (2001), 19-37.  doi: 10.1007/PL00001363.  Google Scholar

[15]

A. Strauss and J. A. Yorke, Perturbing uniform asymptotically stable nonlinear systems, Journal of Differential Equations, 6 (1969), 452-483.  doi: 10.1016/0022-0396(69)90004-7.  Google Scholar

[16]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[17]

X. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, Comm. Appl. Nonlinear Anal., 3 (1996), 43-66.   Google Scholar

[1]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

[2]

Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711

[3]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation. Mathematical Control & Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[4]

Benjamin Webb. Dynamics of functions with an eventual negative Schwarzian derivative. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1393-1408. doi: 10.3934/dcds.2009.24.1393

[5]

Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129

[6]

Filippo Gazzola, Hans-Christoph Grunau. Eventual local positivity for a biharmonic heat equation in RN. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 83-87. doi: 10.3934/dcdss.2008.1.83

[7]

Chi Hin Chan, Magdalena Czubak, Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 847-861. doi: 10.3934/dcds.2010.27.847

[8]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations & Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[9]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[10]

Jerry Bona, Jiahong Wu. Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1141-1168. doi: 10.3934/dcds.2009.23.1141

[11]

P. Magal, H. R. Thieme. Eventual compactness for semiflows generated by nonlinear age-structured models. Communications on Pure & Applied Analysis, 2004, 3 (4) : 695-727. doi: 10.3934/cpaa.2004.3.695

[12]

Pablo Amster, Mariel Paula Kuna, Gonzalo Robledo. Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1695-1709. doi: 10.3934/cpaa.2019080

[13]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

[14]

Tetsuya Ishiwata. Motion of polygonal curved fronts by crystalline motion: v-shaped solutions and eventual monotonicity. Conference Publications, 2011, 2011 (Special) : 717-726. doi: 10.3934/proc.2011.2011.717

[15]

María Anguiano, Tomás Caraballo. Asymptotic behaviour of a non-autonomous Lorenz-84 system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3901-3920. doi: 10.3934/dcds.2014.34.3901

[16]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[17]

Jacson Simsen, Mariza Stefanello Simsen. On asymptotically autonomous dynamics for multivalued evolution problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3557-3567. doi: 10.3934/dcdsb.2018278

[18]

Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial & Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563

[19]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic & Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[20]

Hongyong Cui. Convergences of asymptotically autonomous pullback attractors towards semigroup attractors. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3525-3535. doi: 10.3934/dcdsb.2018276

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (43)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]