August  2019, 24(8): 4475-4511. doi: 10.3934/dcdsb.2019128

On the Alekseev-Gröbner formula in Banach spaces

1. 

Seminar for Applied Mathematics, Department of Mathematics, ETH Zürich, Zürich, Switzerland

2. 

Institute of Mathematics, Faculty of Mathematics and Natural Sciences, University of Kassel, Kassel, Germany

* Corresponding author: Primož Pušnik

This paper is dedicated to Peter Kloeden on the occasion of his 70th birthday

Received  November 2018 Revised  March 2019 Published  June 2019

Fund Project: This work was partially supported by the SNSF-Research project 200021_156603 "Numerical approximations of nonlinear stochastic ordinary and partial differential equations"

The Alekseev-Gröbner formula is a well known tool in numerical analysis for describing the effect that a perturbation of an ordinary differential equation (ODE) has on its solution. In this article we provide an extension of the Alekseev-Gröbner formula for Banach space valued ODEs under, loosely speaking, mild conditions on the perturbation of the considered ODEs.

Citation: Arnulf Jentzen, Felix Lindner, Primož Pušnik. On the Alekseev-Gröbner formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4475-4511. doi: 10.3934/dcdsb.2019128
References:
[1]

V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1961), 28-36. Google Scholar

[2]

R. Coleman, Calculus on Normed Vector Spaces, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-3894-6. Google Scholar

[3]

A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, Second ed., Universitext, Springer, Cham, 2014. doi: 10.1007/978-3-319-05792-7. Google Scholar

[4]

B. Driver, Analysis Tools with Applications, Preprint, 2003. Available online: http://www.math.ucsd.edu/~ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf.Google Scholar

[5]

L. C. Evans, Partial Differential Equations, Second ed., Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019. Google Scholar

[6]

W. Gröbner, Die Lie-Reihen und ihre Anwendungen, Mathematische Monographien, 3, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960. Google Scholar

[7]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I, Second ed., Springer Series in Computational Mathematics, 8, Springer-Verlag, Berlin, 1993. Nonstiff problems. doi: 10.1007%2F978-3-540-78862-1. Google Scholar

[8] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Second ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511995569. Google Scholar
[9]

A. Iserles and G. Söderlind, Global bounds on numerical error for ordinary differential equations, J. Complexity, 9 (1993), 97-112. doi: 10.1006/jcom.1993.1007. Google Scholar

[10]

A. JentzenD. Salimova and T. Welti, Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations, J. Math. Anal. Appl., 469 (2019), 661-704. doi: 10.1016/j.jmaa.2018.09.032. Google Scholar

[11]

G. LadasG. Ladde and V. Lakshmikantham, On some fundamental properties of solutions of differential equations in Banach spaces, Ann. Mat. Pura Appl. (4), 95 (1973), 255-267. doi: 10.1007/BF02410719. Google Scholar

[12]

J. Niesen, A priori estimates for the global error committed by Runge-Kutta methods for a nonlinear oscillator, LMS J. Comput. Math., 6 (2003), 18-28. doi: 10.1112/S1461157000000358. Google Scholar

[13]

C. Prévøt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007. doi: 10.1007%2F978-3-540-70781-3. Google Scholar

[14]

W. Rudin, Principles of Mathematical Analysis, Third ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. Google Scholar

show all references

References:
[1]

V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1961), 28-36. Google Scholar

[2]

R. Coleman, Calculus on Normed Vector Spaces, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-3894-6. Google Scholar

[3]

A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, Second ed., Universitext, Springer, Cham, 2014. doi: 10.1007/978-3-319-05792-7. Google Scholar

[4]

B. Driver, Analysis Tools with Applications, Preprint, 2003. Available online: http://www.math.ucsd.edu/~ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf.Google Scholar

[5]

L. C. Evans, Partial Differential Equations, Second ed., Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019. Google Scholar

[6]

W. Gröbner, Die Lie-Reihen und ihre Anwendungen, Mathematische Monographien, 3, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960. Google Scholar

[7]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I, Second ed., Springer Series in Computational Mathematics, 8, Springer-Verlag, Berlin, 1993. Nonstiff problems. doi: 10.1007%2F978-3-540-78862-1. Google Scholar

[8] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Second ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511995569. Google Scholar
[9]

A. Iserles and G. Söderlind, Global bounds on numerical error for ordinary differential equations, J. Complexity, 9 (1993), 97-112. doi: 10.1006/jcom.1993.1007. Google Scholar

[10]

A. JentzenD. Salimova and T. Welti, Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations, J. Math. Anal. Appl., 469 (2019), 661-704. doi: 10.1016/j.jmaa.2018.09.032. Google Scholar

[11]

G. LadasG. Ladde and V. Lakshmikantham, On some fundamental properties of solutions of differential equations in Banach spaces, Ann. Mat. Pura Appl. (4), 95 (1973), 255-267. doi: 10.1007/BF02410719. Google Scholar

[12]

J. Niesen, A priori estimates for the global error committed by Runge-Kutta methods for a nonlinear oscillator, LMS J. Comput. Math., 6 (2003), 18-28. doi: 10.1112/S1461157000000358. Google Scholar

[13]

C. Prévøt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007. doi: 10.1007%2F978-3-540-70781-3. Google Scholar

[14]

W. Rudin, Principles of Mathematical Analysis, Third ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. Google Scholar

[1]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[2]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[3]

Ismara  Álvarez-Barrientos, Mijail Borges-Quintana, Miguel Angel Borges-Trenard, Daniel Panario. Computing Gröbner bases associated with lattices. Advances in Mathematics of Communications, 2016, 10 (4) : 851-860. doi: 10.3934/amc.2016045

[4]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[5]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[6]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[7]

Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems & Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567

[8]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[9]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[10]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[11]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[12]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[13]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[14]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[15]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019227

[16]

Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637

[17]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[18]

Paolo Perfetti. An infinite-dimensional extension of a Poincaré's result concerning the continuation of periodic orbits. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 401-418. doi: 10.3934/dcds.1997.3.401

[19]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[20]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (31)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]