[1]
|
University of Ioannina, Department of Computer Science and Engineering Teaching Resources, http://www.cs.uoi.gr/tsap/teaching/InformationNetworks/data-code.html., Accessed: 2017-03-13.
|
[2]
|
MIT Strategic Engineering Research Group: Matlab Tools for Network Analysis (2006-2011), http://strategic.mit.edu/docs/matlab_networks/random_modular_graph.m., Accessed: 2017-07-20.
|
[3]
|
SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.stanford.edu/data, Accessed: 2017-07-01.
|
[4]
|
R. Albert, H. Jeong and A.-L. Barabási, Internet: Diameter of the world-wide web, Nature, (1999), 130–131.
|
[5]
|
S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2.
|
[6]
|
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer Science & Business Media, 2008.
|
[7]
|
A.-L. Barabási, Scale-free networks: A decade and beyond, Science, (2002), 412–413.
|
[8]
|
A.-L. Barabási and E. Bonabeau, Scale-free, Scientific American, (2003), 50–59.
|
[9]
|
F. Barahona, M. Grötschel, M. Jünger and G. Reinhelt, An application of combinatorial optimization to statistical physics and circuit layout design, Scientific American, (2003), 50–59.
|
[10]
|
G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM Journal on Numerical Analysis, 32 (1995), 484-500.
doi: 10.1137/0732020.
|
[11]
|
A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data, Multiscale Modeling & Simulation, 10 (2012), 1090-1118.
doi: 10.1137/11083109X.
|
[12]
|
B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184. Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0619-4.
|
[13]
|
A. Braides, Gamma-convergence for Beginners, Clarendon Press, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001.
|
[14]
|
L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, Journal of Differential Equations, 90 (1991), 211-237.
doi: 10.1016/0022-0396(91)90147-2.
|
[15]
|
S. Bylka, A. Idzik and Z. Tuza, Maximum cuts: Improvements and local algorithmic analogues of the Edwards–Erdös inequality, Discrete Mathematics, 194 (1999), 39-58.
doi: 10.1016/S0012-365X(98)00115-0.
|
[16]
|
L. Calatroni, Y. van Gennip, C.-B. Schönlieb, H. M. Rowland and A. Flenner, Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images, Journal of Mathematical Imaging and Vision, 57 (2017), 269-291.
doi: 10.1007/s10851-016-0678-0.
|
[17]
|
D. Calvetti, L. Reichel and D. C. Sorensen, An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Electronic Transactions on Numerical Analysis, 2 (1994), 1-21.
|
[18]
|
F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997.
|
[19]
|
R. Courant and D. Hilbert, Methods of Mathematical Physics, CUP Archive, 1965.
|
[20]
|
G. Dal Maso, An Introduction to $\Gamma$-convergence, in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1993.
doi: 10.1007/978-1-4612-0327-8.
|
[21]
|
M. Desai and V. Rao, A characterization of the smallest eigenvalue of a graph, Journal of Graph Theory, 18 (1994), 181-194.
doi: 10.1002/jgt.3190180210.
|
[22]
|
S. Esedo${\rm{\tilde g}}$lu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, Communications on Pure and Applied Mathematics, 68 (2015), 808-864.
doi: 10.1002/cpa.21527.
|
[23]
|
J. G. F. Francis, The QR transformation a unitary analogue to the LR transformation—Part 1, The Computer Journal, 4 (1961), 265-271.
doi: 10.1093/comjnl/4.3.265.
|
[24]
|
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, San Francisco, LA: Freeman, 1979.
|
[25]
|
M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM (JACM), 42 (1995), 1115-1145.
doi: 10.1145/227683.227684.
|
[26]
|
G. H. Golub and C. F. van Loan, Matrix Computations, Fourth edition. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013.
|
[27]
|
M. Grötschel and W. R. Pulleyblank, Weakly bipartite graphs and the Max-Cut problem, Operations Research Letters, 1 (1981), 23-27.
doi: 10.1016/0167-6377(81)90020-1.
|
[28]
|
J.-M. Guo, A new upper bound for the Laplacian spectral radius of graphs, Linear Algebra and Its Applications, 400 (2005), 61-66.
doi: 10.1016/j.laa.2004.10.022.
|
[29]
|
V. Guruswami, Maximum cut on line and total graphs, Discrete Applied Mathematics, 92 (1999), 217-221.
doi: 10.1016/S0166-218X(99)00056-6.
|
[30]
|
F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM Journal on Computing, 4 (1975), 221-225.
doi: 10.1137/0204019.
|
[31]
|
Y. Haribara, S. Utsunomiya and Y. Yamamoto, A coherent Ising machine for MAX-CUT problems: Performance evaluation against semidefinite programming and simulated annealing, in Principles and Methods of Quantum Information Technologies Springer, 911 (2016), 251–262.
doi: 10.1007/978-4-431-55756-2_12.
|
[32]
|
M. Hein, J.-Y. Audibert and U. von Luxburg, Graph Laplacians and their convergence on random neighborhood graphs, Journal of Machine Learning Research, 8 (2007), 1325-1368.
|
[33]
|
H. Hu, T. Laurent, M. A. Porter and A. L. Bertozzi, A method based on total variation for network modularity optimization using the MBO scheme, SIAM Journal on Applied Mathematics, 73 (2013), 2224-2246.
doi: 10.1137/130917387.
|
[34]
|
C.-Y. Kao and Y. van Gennip,, Private communication.
|
[35]
|
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, Springer, (1972), 85–103.
|
[36]
|
S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the thirty-fourth Annual ACM Symposium on Theory of Computing, ACM, (2002), 767–775.
doi: 10.1145/509907.510017.
|
[37]
|
S. Khot, G. Kindler, E. Mossel and R. O'Donnell, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, SIAM Journal on Computing, 37 (2007), 319-357.
doi: 10.1137/S0097539705447372.
|
[38]
|
J. B. Lasserre, A MAX-CUT formulation of 0/1 programs, Operations Research Letters, 44 (2016), 158-164.
doi: 10.1016/j.orl.2015.12.014.
|
[39]
|
R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 789-821.
doi: 10.1137/S0895479895281484.
|
[40]
|
E. Merkurjev, T. Kostic and A. L. Bertozzi, An MBO scheme on graphs for classification and image processing, SIAM Journal on Imaging Sciences, 6 (2013), 1903-1930.
doi: 10.1137/120886935.
|
[41]
|
B. Merriman, J. Bence and S. Osher, Diffusion Generated Motion by Mean Curvature, UCLA Department of Mathematics CAM report CAM 06–32, 1992.
|
[42]
|
B. Merriman, J. Bence and S. Osher, Diffusion generated motion by mean curvature, AMS Selected Letters, Crystal Grower's Workshop, (1993), 73–83.
|
[43]
|
H. D. Mittelmann, The state-of-the-art in conic optimization software, in Handbook on Semidefinite, Conic and Polynomial Optimization Springer, 166 (2012), 671–686.
doi: 10.1007/978-1-4614-0769-0_23.
|
[44]
|
L. Modica and S. Mortola, Un esempio di $\Gamma^-$-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299.
|
[45]
|
L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Archive for Rational Mechanics and Analysis, 98 (1987), 123-142.
doi: 10.1007/BF00251230.
|
[46]
|
B. Mohar, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics, and Applications, Volume 2, Wiley, (1991), 871–898.
|
[47]
|
R. J. Radke, A Matlab Implementation of the Implicitly Restarted Arnoldi Method for Solving Large-scale Eigenvalue Problems, Masters thesis, Rice University, 1996.
|
[48]
|
W. Rudin, Principles of Mathematical Analysis, McGraw-hill New York, 1964.
|
[49]
|
J.-L. Shu, Y. Hong and K. Wen-Ren, A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra and Its Applications, 347 (2002), 123-129.
doi: 10.1016/S0024-3795(01)00548-1.
|
[50]
|
D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, in Parallel Numerical Algorithms, Springer, 4 (1997), 119–165.
doi: 10.1007/978-94-011-5412-3_5.
|
[51]
|
J. A. Soto, Improved analysis of a Max-Cut algorithm based on spectral partitioning, SIAM Journal on Discrete Mathematics, 29 (2015), 259-268.
doi: 10.1137/14099098X.
|
[52]
|
L. Trevisan, G. B. Sorkin, M. Sudan and D. P. Williamson, Gadgets, approximation, and linear programming, SIAM Journal on Computing, 29 (2000), 2074-2097.
doi: 10.1137/S0097539797328847.
|
[53]
|
L. Trevisan, Max-cut and the smallest eigenvalue, SIAM Journal on Computing, 41 (2012), 1769-1786.
doi: 10.1137/090773714.
|
[54]
|
R. H. Tütüncü, K.-C. Toh and M. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming, 95 (2003), 189-217.
doi: 10.1007/s10107-002-0347-5.
|
[55]
|
Y. van Gennip and A. L. Bertozzi, $\Gamma$-convergence of graph Ginzburg-Landau functionals, Advances in Differential Equations, 17 (2012), 1115-1180.
|
[56]
|
Y. van Gennip, N. Guillen, B. Osting and A. L. Bertozzi, Mean curvature, threshold dynamics, and phase field theory on finite graphs, Milan Journal of Mathematics, 82 (2014), 3-65.
doi: 10.1007/s00032-014-0216-8.
|
[57]
|
Y. van Gennip, An MBO scheme for minimizing the graph Ohta–Kawasaki functional, Journal Of Nonlinear Science, 2018.
|
[58]
|
U. von Luxburg, A tutorial on spectral clustering, Statistics and computing, 17 (2007), 395-416.
doi: 10.1007/s11222-007-9033-z.
|
[59]
|
X.-D. Zhang, The signless Laplacian spectral radius of graphs with given degree sequences, Discrete Applied Mathematics, 157 (2009), 2928-2937.
doi: 10.1016/j.dam.2009.02.022.
|