[1]
|
A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.
doi: 10.1137/S0036139900380955.
|
[2]
|
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow?, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099.
|
[3]
|
E. Bourrel and J.-B. Lesort, Mixing microscopic and macroscopic representations of traffic flow: Hybrid model based on Lighthill-Whitham-Richards theory, Transportation Research Record, 1852 (2003), 193-200.
doi: 10.3141/1852-24.
|
[4]
|
G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379-394.
doi: 10.3934/dcdss.2014.7.379.
|
[5]
|
G. Bretti, R. Natalini and B. Piccoli, A fluid-dynamic traffic model on road networks, Arch. Comput. Methods Eng., 14 (2007), 139-172.
doi: 10.1007/s11831-007-9004-8.
|
[6]
|
M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study, Netw. Heterog. Media, 9 (2014), 519-552.
doi: 10.3934/nhm.2014.9.519.
|
[7]
|
R. M. Colombo and A. Groli, Minimising stop and go waves to optimise traffic flow, Appl. Math. Lett., 17 (2004), 697-701.
doi: 10.1016/S0893-9659(04)90107-3.
|
[8]
|
R. M. Colombo and F. Marcellini, A mixed ODE-PDE model for vehicular traffic, Math. Meth. Appl. Sci., 38 (2015), 1292-1302.
doi: 10.1002/mma.3146.
|
[9]
|
R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Mat. Univ. Padova, 131 (2014), 217-235.
doi: 10.4171/RSMUP/131-13.
|
[10]
|
E. Cristiani, Blending Brownian motion and heat equation, J. Coupled Syst. Multiscale Dyn., 3 (2015), 351-356.
doi: 10.1166/jcsmd.2015.1089.
|
[11]
|
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.
doi: 10.1137/100797515.
|
[12]
|
————, How can macroscopic models reveal self-organization in traffic flow?, in 51st IEEE Conference on Decision and Control, 2012. Maui, Hawaii, December 10-13, 2012.
|
[13]
|
————, Multiscale Modeling of Pedestrian Dynamics, Modeling, Simulation & Applications, Springer, 2014.
doi: 10.1007/978-3-319-06620-2.
|
[14]
|
E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016), 395-413.
doi: 10.3934/nhm.2016002.
|
[15]
|
E. Cristiani and A. Tosin, Reducing complexity of multiagent systems with symmetry breaking: an application to opinion dynamics with polls, Multiscale Model. Simul., 16 (2018), 528-549.
doi: 10.1137/17M113397X.
|
[16]
|
M. Di Francesco, S. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Boll. Unione Mat. Ital., 10 (2017), 487-501.
doi: 10.1007/s40574-017-0132-2.
|
[17]
|
————, Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic, Math. Biosci. Eng., 14 (2017), 127-141.
doi: 10.3934/mbe.2017009.
|
[18]
|
M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Rational Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4.
|
[19]
|
S. Fan, M. Herty and B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239.
|
[20]
|
S. Fan and B. Seibold, Data-fitted first-order traffic models and their second-order generalizations. Comparison by trajectory and sensor data, Transportation Research Record, 2391 (2013), 32-43.
|
[21]
|
S. Fan, Y. Sun, B. Piccoli, B. Seibold and D. B. Work, A collapsed generalized Aw-Rascle-Zhang model and its model accuracy., arXiv: 1702.03624.
|
[22]
|
M. R. Flynn, A. R. Kasimov, J.-C. Nave, R. R. Rosales and B. Seibold, Self-sustained nonlinear waves in traffic flow, Phys. Rev. E, 79 (2009), 056113, 13pp.
doi: 10.1103/PhysRevE.79.056113.
|
[23]
|
N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential Integral Equations, 28 (2015), 1039-1068.
|
[24]
|
N. Forcadel, W. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 1437-1487.
doi: 10.3934/dcds.2017060.
|
[25]
|
M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 2006.
|
[26]
|
————, Coupling of microscopic and phase transition models at boundary, Netw. Heterog. Media, 8 (2013), 649-661.
doi: 10.3934/nhm.2013.8.649.
|
[27]
|
————, Boundary coupling of microscopic and first order macroscopic traffic model, Nonlinear Differ. Equ. Appl., 24 (2017), p43.
|
[28]
|
J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. Math., 62 (2001), 729-745.
doi: 10.1137/S0036139900378657.
|
[29]
|
R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow, Classics in Applied Mathematics, 21, SIAM, Philadelphia, 1998.
|
[30]
|
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73 (2001), 1067-1141.
doi: 10.1103/RevModPhys.73.1067.
|
[31]
|
M. Herty and R. Illner, Coupling of non-local driving behaviour with fundamental diagrams, Kinetic Rel. Mod., 5 (2012), 843-855.
doi: 10.3934/krm.2012.5.843.
|
[32]
|
M. Hilliges and W. Weidlich, A phenomenological model for dynamic traffic flow in networks, Transportation Res. Part B, 29 (1995), 407-431.
doi: 10.1016/0191-2615(95)00018-9.
|
[33]
|
M. Joueiai, L. Leclercq, H. van Lint and S. P. Hoogendoorn, Multiscale traffic flow model based on the mesoscopic Lighthill-Whitham and Richards models, Transportation Research Record, 2491 (2015), 98-106.
doi: 10.3141/2491-11.
|
[34]
|
B. S. Kerner, Synchronized flow as a new traffic phase and related problems for traffic flow modelling, Math. Comput. Modelling, 35 (2002), 481-508.
doi: 10.1016/S0895-7177(02)80017-6.
|
[35]
|
A. Klar, M. Günther, R. Wegener and T. Materne, Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations, SIAM J. Appl. Math., 64 (2004), 468-483.
doi: 10.1137/S0036139902404700.
|
[36]
|
C. Lattanzio and B. Piccoli, Coupling of microscopic and macroscopic traffic models at boundaries, Math. Models Methods Appl. Sci., 20 (2010), 2349-2370.
doi: 10.1142/S0218202510004945.
|
[37]
|
L. Leclercq, Hybrid approaches to the solutions of the "Lighthill-Whitham-Richards" model, Transportation Research Part B, 41 (2007), 701-709.
doi: 10.1016/j.trb.2006.11.004.
|
[38]
|
R. J. LeVeque, Numerical Methods for Conservation Laws, Springer Basel AG, 1992.
doi: 10.1007/978-3-0348-8629-1.
|
[39]
|
M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond. Ser. A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089.
|
[40]
|
D. Ni, Multiscale modeling of traffic flow, Mathematica Aeterna, 1 (2011), 27-54.
|
[41]
|
D. Ni, H. K. Hsieh and T. Jiang, Modeling phase diagrams as stochastic processes with application in vehicular traffic flow, Appl. Math. Model., 53 (2018), 106-117.
doi: 10.1016/j.apm.2017.08.029.
|
[42]
|
B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models, Mathematics of Complexity and Dynamical Systems, Vols. 1C3, 1748-1770, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1806-1_112.
|
[43]
|
L. A. Pipes, An operational analysis of traffic dynamics, J. Appl. Phys., 24 (1953), 274-281.
doi: 10.1063/1.1721265.
|
[44]
|
G. Puppo, M. Semplice, A. Tosin and G. Visconti, Fundamental diagrams in traffic flow: The case of heterogeneous kinetic models, Commun. Math. Sci., 14 (2016), 643-669.
doi: 10.4310/CMS.2016.v14.n3.a3.
|
[45]
|
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42.
|
[46]
|
B. G. Ros, V. L. Knoop, B. van Arem and S. P. Hoogendoorn, Empirical analysis of the causes of stop-and-go waves at sags, IET Intell. Transp. Syst., 8 (2014), 499-506.
|
[47]
|
E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.
doi: 10.3934/dcdss.2014.7.579.
|
[48]
|
R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprinkle and D. B. Work, Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments, Transportation Res. Part C, 89 (2018), 205-221.
doi: 10.1016/j.trc.2018.02.005.
|
[49]
|
G. Visconti, M. Herty, G. Puppo and A. Tosin, Multivalued fundamental diagrams of traffic flow in the kinetic Fokker-Planck limit, Multiscale Model. Simul., 15 (2017), 1267-1293.
doi: 10.1137/16M1087035.
|
[50]
|
H. Wang, D. Ni, Q.-Y. Chen and J. Li, Stochastic modeling of the equilibrium speed-density relationship, J. Adv. Transp., 47 (2013), 126-150.
doi: 10.1002/atr.172.
|
[51]
|
H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Res. Part B, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3.
|
[52]
|
Y. Zhao and H. M. Zhang, A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic, Transportation Res. Part B, 105 (2017), 315-327.
doi: 10.1016/j.trb.2017.09.004.
|