November  2019, 24(11): 6239-6259. doi: 10.3934/dcdsb.2019137

Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease

Department of Mathematics, University of Houston, Houston, TX 77204, USA

Received  July 2018 Published  July 2019

Motivated by recent outbreaks of the Ebola Virus, we are concerned with the role that a vector reservoir plays in supporting the spatio-temporal spread of a highly lethal disease through a host population. In our context, the reservoir is a species capable of harboring and sustaining the pathogen. We develop models that describe the horizontal spread of the disease among the host population when the host population is in contact with the reservoir and when it is not in contact with the host population. These models are of reaction diffusion type, and they are analyzed, and their long term asymptotic behavior is determined.

Citation: W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137
References:
[1]

N. T. J. Bailey, The Mathematical Theory of Epidemics, Charles Griffin & Company Limited, London, 1957. Google Scholar

[2]

K. J. Brown and S. S. Lin, On the existence of positive eigenfunctions for eigen value problems with indefinite weight function, Journal of Mathematical Analysis and Applications, 75 (1980), 112-120. doi: 10.1016/0022-247X(80)90309-1. Google Scholar

[3]

S. Cantrell and C. Cosner, Spatial Ecology via Reaction Diffusion Equations, J. Wiley and Sons, Hoboken, N.J., 2003. doi: 10.1002/0470871296. Google Scholar

[4]

J. Evans and A. Shenk, Solutions to nerve axon equations, Biophysical Journal, 10 (1970), 1090-1101. Google Scholar

[5]

W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on noncoincident spatial domains, Structured Population Models in Biology and Epidemiology, 115–164, Lecture Notes in Math., 1936, Math. Biosci. Subser., Springer, Berlin, 2008. doi: 10.1007/978-3-540-78273-5_3. Google Scholar

[6]

W. E. FitzgibbonM. LanglaisF. Marpeau and J. J. Morgan, Modeling the circulation of a disease between two host populations on noncoincident spatial domains, Biological Invasions, 7 (2005), 863-875. Google Scholar

[7]

W. E. FitzgibbonM. Langlais and J. J. Morgan, A reacton diffusion system modeling the direct and indirect transmission of dieases, Discrete and Continuous Dynamical Systems, Series B, 4 (2004), 893-910. doi: 10.3934/dcdsb.2004.4.893. Google Scholar

[8]

W. E. FitzgibbonM. Parrott and G. F. Webb, Diffusive epidemic models with crisscross dynamics and incubation, Mathematical Biosciences, 128 (1995), 131-155. doi: 10.1016/0025-5564(94)00070-G. Google Scholar

[9]

O. A. Ladyshenskaja, V. Solonnikov and N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations American Mathematical Society, Providence, RI, 1968. Google Scholar

[10]

K. B. Laupland and L. Valiquette, Ebola virus disease, Canadian Journal of Infectious Diseases and Medical Microbiology, 25 (2014), 128-129. Google Scholar

[11]

M. Marion, Finite dimensional attractors associated with partially dissipative systems, SIAM Journal of Mathematical Analysis, 20 (1989), 815-844. doi: 10.1137/0520057. Google Scholar

[12]

J. J. Morgan, Boundedness and decay results for for reaction diffusion systems, SIAM J. Math. Anal., 21 (1990), 1172-1189. doi: 10.1137/0521064. Google Scholar

[13]

R. Nagel (ed.), One Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184, Springer, Berlin, 1986.Google Scholar

[14]

M. T. Osterholm, K. A. Moore, N. S. Kelley, L. M. Brosseau, G. Wong, F. A. Murphy, C. J. Peters, J. W. LeDuc, P. K. Russell, M. V. Herp, J. Kapetshi, J. J. T. Muyembe, B. K. Ilunga, J. E. Strong, A. Grolla, A. Wolz, B. Kargbo, D. K. Kargbo, P. Formenty, D. A. Sanders and G. P. LondKobinger, Transmission of the Ebola Viruses: What we know and what we do not know, mBio, American Society for Microbiology, 8 (2017), http://mbio.asm.org/content/6/2/e00137-15.full doi: 10.1128/mBio.00137-15. Google Scholar

[15]

A. Pazy, Semigroups of Operators and Partial Differential Equations, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[16]

J. Richardson, Deadly Ebola Virus Linked to Bush Meat, Food Safety News, 2012, http://www.foodsafetynews.com/2012/09/deadly-african-ebola-virus-linked-to-bushmeat/#.WUrBP_4o47ZGoogle Scholar

[17]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin, 1983. Google Scholar

[18]

R. Swanepool, P. Leman, F. Bart, N. Zachariades, L. Brack, P. Rollins, F, Ksiazek and C. Peters, Experimental inoculation of plants with ebola, Emerging Infectious Diseases, 1996,321–325.Google Scholar

[19]

R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8. Google Scholar

[20]

P. D. WalshK. A. AbernethyM. BermejoR. BeyersP. DeWachterM. E. AkouB. HuijbregtsD. I. MamboungaA. K. TohamA. M. KilbournS. A. LahmS. LatourF. MaiselsC. MbinaY. MihindouS. N. ObiangE. N. EffaM. P. StarkeyP. TelferM. ThibaultC. E. G. TutinL. J. T. White and D. S. Wilkie, Catastrophic ape decline in western equatorial Africa, Nature, 422 (2003), 611-614. doi: 10.1038/nature01566. Google Scholar

show all references

References:
[1]

N. T. J. Bailey, The Mathematical Theory of Epidemics, Charles Griffin & Company Limited, London, 1957. Google Scholar

[2]

K. J. Brown and S. S. Lin, On the existence of positive eigenfunctions for eigen value problems with indefinite weight function, Journal of Mathematical Analysis and Applications, 75 (1980), 112-120. doi: 10.1016/0022-247X(80)90309-1. Google Scholar

[3]

S. Cantrell and C. Cosner, Spatial Ecology via Reaction Diffusion Equations, J. Wiley and Sons, Hoboken, N.J., 2003. doi: 10.1002/0470871296. Google Scholar

[4]

J. Evans and A. Shenk, Solutions to nerve axon equations, Biophysical Journal, 10 (1970), 1090-1101. Google Scholar

[5]

W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on noncoincident spatial domains, Structured Population Models in Biology and Epidemiology, 115–164, Lecture Notes in Math., 1936, Math. Biosci. Subser., Springer, Berlin, 2008. doi: 10.1007/978-3-540-78273-5_3. Google Scholar

[6]

W. E. FitzgibbonM. LanglaisF. Marpeau and J. J. Morgan, Modeling the circulation of a disease between two host populations on noncoincident spatial domains, Biological Invasions, 7 (2005), 863-875. Google Scholar

[7]

W. E. FitzgibbonM. Langlais and J. J. Morgan, A reacton diffusion system modeling the direct and indirect transmission of dieases, Discrete and Continuous Dynamical Systems, Series B, 4 (2004), 893-910. doi: 10.3934/dcdsb.2004.4.893. Google Scholar

[8]

W. E. FitzgibbonM. Parrott and G. F. Webb, Diffusive epidemic models with crisscross dynamics and incubation, Mathematical Biosciences, 128 (1995), 131-155. doi: 10.1016/0025-5564(94)00070-G. Google Scholar

[9]

O. A. Ladyshenskaja, V. Solonnikov and N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations American Mathematical Society, Providence, RI, 1968. Google Scholar

[10]

K. B. Laupland and L. Valiquette, Ebola virus disease, Canadian Journal of Infectious Diseases and Medical Microbiology, 25 (2014), 128-129. Google Scholar

[11]

M. Marion, Finite dimensional attractors associated with partially dissipative systems, SIAM Journal of Mathematical Analysis, 20 (1989), 815-844. doi: 10.1137/0520057. Google Scholar

[12]

J. J. Morgan, Boundedness and decay results for for reaction diffusion systems, SIAM J. Math. Anal., 21 (1990), 1172-1189. doi: 10.1137/0521064. Google Scholar

[13]

R. Nagel (ed.), One Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184, Springer, Berlin, 1986.Google Scholar

[14]

M. T. Osterholm, K. A. Moore, N. S. Kelley, L. M. Brosseau, G. Wong, F. A. Murphy, C. J. Peters, J. W. LeDuc, P. K. Russell, M. V. Herp, J. Kapetshi, J. J. T. Muyembe, B. K. Ilunga, J. E. Strong, A. Grolla, A. Wolz, B. Kargbo, D. K. Kargbo, P. Formenty, D. A. Sanders and G. P. LondKobinger, Transmission of the Ebola Viruses: What we know and what we do not know, mBio, American Society for Microbiology, 8 (2017), http://mbio.asm.org/content/6/2/e00137-15.full doi: 10.1128/mBio.00137-15. Google Scholar

[15]

A. Pazy, Semigroups of Operators and Partial Differential Equations, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[16]

J. Richardson, Deadly Ebola Virus Linked to Bush Meat, Food Safety News, 2012, http://www.foodsafetynews.com/2012/09/deadly-african-ebola-virus-linked-to-bushmeat/#.WUrBP_4o47ZGoogle Scholar

[17]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin, 1983. Google Scholar

[18]

R. Swanepool, P. Leman, F. Bart, N. Zachariades, L. Brack, P. Rollins, F, Ksiazek and C. Peters, Experimental inoculation of plants with ebola, Emerging Infectious Diseases, 1996,321–325.Google Scholar

[19]

R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8. Google Scholar

[20]

P. D. WalshK. A. AbernethyM. BermejoR. BeyersP. DeWachterM. E. AkouB. HuijbregtsD. I. MamboungaA. K. TohamA. M. KilbournS. A. LahmS. LatourF. MaiselsC. MbinaY. MihindouS. N. ObiangE. N. EffaM. P. StarkeyP. TelferM. ThibaultC. E. G. TutinL. J. T. White and D. S. Wilkie, Catastrophic ape decline in western equatorial Africa, Nature, 422 (2003), 611-614. doi: 10.1038/nature01566. Google Scholar

[1]

Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493

[2]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[3]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[4]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[5]

Yanzhao Cao, Dawit Denu. Analysis of stochastic vector-host epidemic model with direct transmission. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2109-2127. doi: 10.3934/dcdsb.2016039

[6]

Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048

[7]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[8]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[9]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[10]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[11]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[12]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[13]

Feng-Bin Wang. A periodic reaction-diffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 283-295. doi: 10.3934/dcdsb.2012.17.283

[14]

Ana Carpio, Gema Duro. Explosive behavior in spatially discrete reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 693-711. doi: 10.3934/dcdsb.2009.12.693

[15]

Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5673-5694. doi: 10.3934/dcdsb.2019101

[16]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[17]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[18]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[19]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[20]

Xin Li, Xingfu Zou. On a reaction-diffusion model for sterile insect release method with release on the boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2509-2522. doi: 10.3934/dcdsb.2012.17.2509

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (25)
  • HTML views (125)
  • Cited by (0)

Other articles
by authors

[Back to Top]