November  2019, 24(11): 6261-6278. doi: 10.3934/dcdsb.2019138

Dynamics of a chemostat system with two patches

a. 

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

b. 

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA, 77030

Received  July 2018 Revised  January 2019 Published  July 2019

Fund Project: The first author is supported by NSF grant of China (11571382)

This paper studies a diffusion model with two patches, which is derived from experiments and includes exploitable resources. Our aim is to provide theoretical proof for experimental observations and extend previous theory to consumer-resource systems with external resource inputs. First, we exhibit nonnegativeness and boundedness of solutions of the model. For one-patch subsystems, we demonstrate the global dynamics by excluding periodic solutions. For the two-patch system, we exhibit uniform persistence of the system and asymptotic stability of the positive equilibria, while the equilibria converge to a unique positive point as the diffusion tends to infinity. Then we demonstrate that homogeneously distributed resources support higher total population abundance than heterogeneously distributed resources with diffusion, which coincides with empirical observation but refutes previous theory. Meanwhile, we exhibit new conditions under which populations diffusing in heterogeneous environments can reach higher total size than if non-diffusing. A new finding of our study is that these results hold even with source-sink populations, and varying the diffusion rate can result in survival/extinction of the species. Our results are consistent with experimental observations and provide new insights.

Citation: Shikun Wang. Dynamics of a chemostat system with two patches. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6261-6278. doi: 10.3934/dcdsb.2019138
References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[2]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[3]

C. Cosner, Variability, vagueness and comparison methods for ecological models, Bull. Math. Biol., 58 (1996), 207-246.  doi: 10.1007/BF02458307.  Google Scholar

[4]

D. L. DeAngelisW. Ni and B. Zhang, Dispersal and heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.  doi: 10.1007/s00285-015-0879-y.  Google Scholar

[5]

D. L. DeAngelisW. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443-453.   Google Scholar

[6]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[7] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[8]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[9]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[10]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[11]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118. American Mathematical Society, Providence, RI, 2011.  Google Scholar

[12]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[13]

L. B. CrowderS. J. LymanW. F. Figueira and J. Priddy, Source-sink population dynamics and the problem of siting marine reserves, Bulletin of Marine Science-Miami, 66 (2000), 799-820.   Google Scholar

[14]

A. R. Watkinson and W. J. Sutherland, Sources, sinks and pseudo-sinks, J. Anim. Ecol., 64 (1995), 126-130.   Google Scholar

[15]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

[16]

B. ZhangX. LiuD. L. DeAngelisW.-M. Ni and G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment, athematical Biosciences, 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.  Google Scholar

show all references

References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[2]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[3]

C. Cosner, Variability, vagueness and comparison methods for ecological models, Bull. Math. Biol., 58 (1996), 207-246.  doi: 10.1007/BF02458307.  Google Scholar

[4]

D. L. DeAngelisW. Ni and B. Zhang, Dispersal and heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.  doi: 10.1007/s00285-015-0879-y.  Google Scholar

[5]

D. L. DeAngelisW. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443-453.   Google Scholar

[6]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[7] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[8]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[9]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[10]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[11]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118. American Mathematical Society, Providence, RI, 2011.  Google Scholar

[12]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[13]

L. B. CrowderS. J. LymanW. F. Figueira and J. Priddy, Source-sink population dynamics and the problem of siting marine reserves, Bulletin of Marine Science-Miami, 66 (2000), 799-820.   Google Scholar

[14]

A. R. Watkinson and W. J. Sutherland, Sources, sinks and pseudo-sinks, J. Anim. Ecol., 64 (1995), 126-130.   Google Scholar

[15]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

[16]

B. ZhangX. LiuD. L. DeAngelisW.-M. Ni and G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment, athematical Biosciences, 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.  Google Scholar

Figure 1.  Phase-plane diagram of subsystem (3). Stable and unstable equilibria are identified by solid and open circles, respectively. Vector fields are shown by gray arrows. Isoclines of the nutrient and consumer are represented by red and blue lines, respectively. Let $ N_{01} = 0.02, r_1 = k = 0.1, \gamma = m_1 = 0.01 $. All positive solutions of (3) converge to equilibrium $ E^+(0.111, 8.85) $
[1]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[2]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[3]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[4]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[5]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[6]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

[7]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[8]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[9]

Arthur D. Lander, Qing Nie, Frederic Y. M. Wan. Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 239-262. doi: 10.3934/mbe.2005.2.239

[10]

Said Boulite, S. Hadd, L. Maniar. Critical spectrum and stability for population equations with diffusion in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 265-276. doi: 10.3934/dcdsb.2005.5.265

[11]

Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643

[12]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020031

[13]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[14]

Xingwang Yu, Sanling Yuan. Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020014

[15]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[16]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations & Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[17]

Horst R. Thieme. Distributed susceptibility: A challenge to persistence theory in infectious disease models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 865-882. doi: 10.3934/dcdsb.2009.12.865

[18]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[19]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[20]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (48)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]