The generalized Hunter-Saxton system comprises several well-kno-wn models from fluid dynamics and serves as a tool for the study of fluid convection and stretching in one-dimensional evolution equations. In this work, we examine the global regularity of periodic smooth solutions of this system in $ L^p $, $ p \in [1,\infty) $, spaces for nonzero real parameters $ (\lambda,\kappa) $. Our results significantly improve and extend those by Wunsch et al. [
Citation: |
[1] | E. W. Barnes, A New Development of the Theory of Hypergeometric Functions, Proc. London Math. Soc., 6 (1908), 141-177. doi: 10.1112/plms/s2-6.1.141. |
[2] | R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. |
[3] | S. Childress, G.R. Ierley, E.A. Spiegel and W.R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation-point form, J. Fluid Mech., 203 (1989), 1-22. doi: 10.1017/S0022112089001357. |
[4] | A. Constantin and R.I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. |
[5] | A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. An., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2. |
[6] | H.R. Dullin, G.A. Gottwald and D.D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73-95. doi: 10.1016/S0169-5983(03)00046-7. |
[7] | A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher transcendental functions, Vol I, McGraw-Hill, 36 (1981), 56-119. |
[8] | J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Cont. Dyn. S., 19 (2007), 493-513. doi: 10.3934/dcds.2007.19.493. |
[9] | G. Gasper and M. Rahman, Basic Hypergeometric Series, Second edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251. |
[10] | A.V. Gurevich and K.P. Zybin, Nondissipative gravitational turbulence, Soviet Phys. JETP, 67 (1988), 1-12. |
[11] | A.V. Gurevich and K.P. Zybin, Large-scale structure of the Universe, Analytic theory, Soviet Phys. Usp., 38 (1995), 687-722. |
[12] | D.D. Holm and M.F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380. doi: 10.1137/S1111111102410943. |
[13] | J.K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521. doi: 10.1137/0151075. |
[14] | R.S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82. doi: 10.1017/S0022112001007224. |
[15] | J. Lenells and O. Lechtenfeld, On the $N = 2$ supersymmetric Camassa-Holm and Hunter-Saxton equations, J. Math. Phys., 50 (2009), 012704, 17 pp. doi: 10.1063/1.3060125. |
[16] | J. Lenells and M. Wunsch, The Hunter-Saxton system and the geodesics on a pseudosphere, Commun. Part. Diff. Eq., 38 (2013), 860-881. doi: 10.1080/03605302.2013.771660. |
[17] | J. Liu and Z. Yin, Global weak solutions for a periodic two-component $\mu$-Hunter-Saxton system, Monatsh. Math., 168 (2012), 503-521. doi: 10.1007/s00605-011-0346-9. |
[18] | B. Moon and Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system, J. Differ. Equations, 253 (2012), 319-355. doi: 10.1016/j.jde.2012.02.011. |
[19] | B. Moon, Solitary wave solutions of the generalized two-component Hunter-Saxton system, Nonlinear Anal-Theor., 89 (2013), 242-249. doi: 10.1016/j.na.2013.05.004. |
[20] | H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics, Taiwan J. Math., 4 (2000), 65-103. doi: 10.11650/twjm/1500407199. |
[21] | M. V. Pavlov, The Gurevich-Zybin system, J. Phys. A-Math. Gen., 38 (2005), 3823-3840. doi: 10.1088/0305-4470/38/17/008. |
[22] | I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168. doi: 10.1017/S0022112062000130. |
[23] | A. Sarria, Global estimates and blow-up criteria for the generalized Hunter-Saxton system, Discrete Cont. Dyn-B, 20 (2015), 641-673. doi: 10.3934/dcdsb.2015.20.641. |
[24] | A. Sarria, Regularity of stagnation-point form solutions of the two-dimensional Euler equations, Differential and Integral Equations, 28 (2015), 239-254. |
[25] | A. Sarria and R. Saxton, Blow-up of solutions to the generalized inviscid Proudman-Johnson equation, J. Math. Fluid Mech., 15 (2013), 493-523. doi: 10.1007/s00021-012-0126-x. |
[26] | A. Sarria and R. Saxton, The role of initial curvature in solutions to the generalized inviscid Proudman-Johnson equation, Quart. Appl. Math., 73 (2015), 55-91. doi: 10.1090/S0033-569X-2015-01378-3. |
[27] | R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid, SIAM J. Math. Anal., 40 (2008), 1499-1515. doi: 10.1137/080713768. |
[28] | M. Wunsch, The generalized Proudman-Johnson equation revisited, J. Math. Fluid Mech., 13 (2011), 147-154. doi: 10.1007/s00021-009-0004-3. |
[29] | M. Wunsch, On the Hunter-Saxton system, Discrete Cont. Dyn-B, 12 (2009), 647-656. doi: 10.3934/dcdsb.2009.12.647. |
[30] | M. Wunsch, The generalized Hunter-Saxton system, SIAM J. Math. Anal., 42 (2010), 1286-1304. doi: 10.1137/090768576. |
[31] | H. Wu and M. Wunsch, Global existence for the generalized two-component Hunter-Saxton system, J. Math. Fluid Mech., 14 (2012), 455-469. doi: 10.1007/s00021-011-0075-9. |