• Previous Article
    Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity
  • DCDS-B Home
  • This Issue
  • Next Article
    Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary
doi: 10.3934/dcdsb.2019142

On the $ L^p $ regularity of solutions to the generalized Hunter-Saxton system

1. 

Department of Mathematics, University of Maine, Orono, ME 04469, USA

2. 

Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

3. 

Department of Mathematics, Cornell University, Ithaca, NY 14850, USA

4. 

Department of Mathematics, University of North Georgia, Dahlonega, GA 30533, USA

Received  September 2018 Revised  December 2018 Published  July 2019

The generalized Hunter-Saxton system comprises several well-kno-wn models from fluid dynamics and serves as a tool for the study of fluid convection and stretching in one-dimensional evolution equations. In this work, we examine the global regularity of periodic smooth solutions of this system in $ L^p $, $ p \in [1,\infty) $, spaces for nonzero real parameters $ (\lambda,\kappa) $. Our results significantly improve and extend those by Wunsch et al. [29,30,31] and Sarria [23]. Furthermore, we study the effects that different boundary conditions have on the global regularity of solutions by replacing periodicity with a homogeneous three-point boundary condition and establish finite-time blowup of a local-in-time solution of the resulting system for particular values of the parameters.

Citation: Jaeho Choi, Nitin Krishna, Nicole Magill, Alejandro Sarria. On the $ L^p $ regularity of solutions to the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019142
References:
[1]

E. W. Barnes, A New Development of the Theory of Hypergeometric Functions, Proc. London Math. Soc., 6 (1908), 141-177. doi: 10.1112/plms/s2-6.1.141. Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[3]

S. ChildressG.R. IerleyE.A. Spiegel and W.R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation-point form, J. Fluid Mech., 203 (1989), 1-22. doi: 10.1017/S0022112089001357. Google Scholar

[4]

A. Constantin and R.I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[5]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. An., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2. Google Scholar

[6]

H.R. DullinG.A. Gottwald and D.D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73-95. doi: 10.1016/S0169-5983(03)00046-7. Google Scholar

[7]

A. ErdelyiW. MagnusF. Oberhettinger and F.G. Tricomi, Higher transcendental functions, Vol I, McGraw-Hill, 36 (1981), 56-119. Google Scholar

[8]

J. EscherO. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Cont. Dyn. S., 19 (2007), 493-513. doi: 10.3934/dcds.2007.19.493. Google Scholar

[9]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Second edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251. Google Scholar

[10]

A.V. Gurevich and K.P. Zybin, Nondissipative gravitational turbulence, Soviet Phys. JETP, 67 (1988), 1-12. Google Scholar

[11]

A.V. Gurevich and K.P. Zybin, Large-scale structure of the Universe, Analytic theory, Soviet Phys. Usp., 38 (1995), 687-722. Google Scholar

[12]

D.D. Holm and M.F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380. doi: 10.1137/S1111111102410943. Google Scholar

[13]

J.K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521. doi: 10.1137/0151075. Google Scholar

[14]

R.S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82. doi: 10.1017/S0022112001007224. Google Scholar

[15]

J. Lenells and O. Lechtenfeld, On the $N = 2$ supersymmetric Camassa-Holm and Hunter-Saxton equations, J. Math. Phys., 50 (2009), 012704, 17 pp. doi: 10.1063/1.3060125. Google Scholar

[16]

J. Lenells and M. Wunsch, The Hunter-Saxton system and the geodesics on a pseudosphere, Commun. Part. Diff. Eq., 38 (2013), 860-881. doi: 10.1080/03605302.2013.771660. Google Scholar

[17]

J. Liu and Z. Yin, Global weak solutions for a periodic two-component $\mu$-Hunter-Saxton system, Monatsh. Math., 168 (2012), 503-521. doi: 10.1007/s00605-011-0346-9. Google Scholar

[18]

B. Moon and Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system, J. Differ. Equations, 253 (2012), 319-355. doi: 10.1016/j.jde.2012.02.011. Google Scholar

[19]

B. Moon, Solitary wave solutions of the generalized two-component Hunter-Saxton system, Nonlinear Anal-Theor., 89 (2013), 242-249. doi: 10.1016/j.na.2013.05.004. Google Scholar

[20]

H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics, Taiwan J. Math., 4 (2000), 65-103. doi: 10.11650/twjm/1500407199. Google Scholar

[21]

M. V. Pavlov, The Gurevich-Zybin system, J. Phys. A-Math. Gen., 38 (2005), 3823-3840. doi: 10.1088/0305-4470/38/17/008. Google Scholar

[22]

I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168. doi: 10.1017/S0022112062000130. Google Scholar

[23]

A. Sarria, Global estimates and blow-up criteria for the generalized Hunter-Saxton system, Discrete Cont. Dyn-B, 20 (2015), 641-673. doi: 10.3934/dcdsb.2015.20.641. Google Scholar

[24]

A. Sarria, Regularity of stagnation-point form solutions of the two-dimensional Euler equations, Differential and Integral Equations, 28 (2015), 239-254. Google Scholar

[25]

A. Sarria and R. Saxton, Blow-up of solutions to the generalized inviscid Proudman-Johnson equation, J. Math. Fluid Mech., 15 (2013), 493-523. doi: 10.1007/s00021-012-0126-x. Google Scholar

[26]

A. Sarria and R. Saxton, The role of initial curvature in solutions to the generalized inviscid Proudman-Johnson equation, Quart. Appl. Math., 73 (2015), 55-91. doi: 10.1090/S0033-569X-2015-01378-3. Google Scholar

[27]

R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid, SIAM J. Math. Anal., 40 (2008), 1499-1515. doi: 10.1137/080713768. Google Scholar

[28]

M. Wunsch, The generalized Proudman-Johnson equation revisited, J. Math. Fluid Mech., 13 (2011), 147-154. doi: 10.1007/s00021-009-0004-3. Google Scholar

[29]

M. Wunsch, On the Hunter-Saxton system, Discrete Cont. Dyn-B, 12 (2009), 647-656. doi: 10.3934/dcdsb.2009.12.647. Google Scholar

[30]

M. Wunsch, The generalized Hunter-Saxton system, SIAM J. Math. Anal., 42 (2010), 1286-1304. doi: 10.1137/090768576. Google Scholar

[31]

H. Wu and M. Wunsch, Global existence for the generalized two-component Hunter-Saxton system, J. Math. Fluid Mech., 14 (2012), 455-469. doi: 10.1007/s00021-011-0075-9. Google Scholar

show all references

References:
[1]

E. W. Barnes, A New Development of the Theory of Hypergeometric Functions, Proc. London Math. Soc., 6 (1908), 141-177. doi: 10.1112/plms/s2-6.1.141. Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[3]

S. ChildressG.R. IerleyE.A. Spiegel and W.R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation-point form, J. Fluid Mech., 203 (1989), 1-22. doi: 10.1017/S0022112089001357. Google Scholar

[4]

A. Constantin and R.I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[5]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. An., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2. Google Scholar

[6]

H.R. DullinG.A. Gottwald and D.D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73-95. doi: 10.1016/S0169-5983(03)00046-7. Google Scholar

[7]

A. ErdelyiW. MagnusF. Oberhettinger and F.G. Tricomi, Higher transcendental functions, Vol I, McGraw-Hill, 36 (1981), 56-119. Google Scholar

[8]

J. EscherO. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Cont. Dyn. S., 19 (2007), 493-513. doi: 10.3934/dcds.2007.19.493. Google Scholar

[9]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Second edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251. Google Scholar

[10]

A.V. Gurevich and K.P. Zybin, Nondissipative gravitational turbulence, Soviet Phys. JETP, 67 (1988), 1-12. Google Scholar

[11]

A.V. Gurevich and K.P. Zybin, Large-scale structure of the Universe, Analytic theory, Soviet Phys. Usp., 38 (1995), 687-722. Google Scholar

[12]

D.D. Holm and M.F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380. doi: 10.1137/S1111111102410943. Google Scholar

[13]

J.K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521. doi: 10.1137/0151075. Google Scholar

[14]

R.S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82. doi: 10.1017/S0022112001007224. Google Scholar

[15]

J. Lenells and O. Lechtenfeld, On the $N = 2$ supersymmetric Camassa-Holm and Hunter-Saxton equations, J. Math. Phys., 50 (2009), 012704, 17 pp. doi: 10.1063/1.3060125. Google Scholar

[16]

J. Lenells and M. Wunsch, The Hunter-Saxton system and the geodesics on a pseudosphere, Commun. Part. Diff. Eq., 38 (2013), 860-881. doi: 10.1080/03605302.2013.771660. Google Scholar

[17]

J. Liu and Z. Yin, Global weak solutions for a periodic two-component $\mu$-Hunter-Saxton system, Monatsh. Math., 168 (2012), 503-521. doi: 10.1007/s00605-011-0346-9. Google Scholar

[18]

B. Moon and Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system, J. Differ. Equations, 253 (2012), 319-355. doi: 10.1016/j.jde.2012.02.011. Google Scholar

[19]

B. Moon, Solitary wave solutions of the generalized two-component Hunter-Saxton system, Nonlinear Anal-Theor., 89 (2013), 242-249. doi: 10.1016/j.na.2013.05.004. Google Scholar

[20]

H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics, Taiwan J. Math., 4 (2000), 65-103. doi: 10.11650/twjm/1500407199. Google Scholar

[21]

M. V. Pavlov, The Gurevich-Zybin system, J. Phys. A-Math. Gen., 38 (2005), 3823-3840. doi: 10.1088/0305-4470/38/17/008. Google Scholar

[22]

I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168. doi: 10.1017/S0022112062000130. Google Scholar

[23]

A. Sarria, Global estimates and blow-up criteria for the generalized Hunter-Saxton system, Discrete Cont. Dyn-B, 20 (2015), 641-673. doi: 10.3934/dcdsb.2015.20.641. Google Scholar

[24]

A. Sarria, Regularity of stagnation-point form solutions of the two-dimensional Euler equations, Differential and Integral Equations, 28 (2015), 239-254. Google Scholar

[25]

A. Sarria and R. Saxton, Blow-up of solutions to the generalized inviscid Proudman-Johnson equation, J. Math. Fluid Mech., 15 (2013), 493-523. doi: 10.1007/s00021-012-0126-x. Google Scholar

[26]

A. Sarria and R. Saxton, The role of initial curvature in solutions to the generalized inviscid Proudman-Johnson equation, Quart. Appl. Math., 73 (2015), 55-91. doi: 10.1090/S0033-569X-2015-01378-3. Google Scholar

[27]

R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid, SIAM J. Math. Anal., 40 (2008), 1499-1515. doi: 10.1137/080713768. Google Scholar

[28]

M. Wunsch, The generalized Proudman-Johnson equation revisited, J. Math. Fluid Mech., 13 (2011), 147-154. doi: 10.1007/s00021-009-0004-3. Google Scholar

[29]

M. Wunsch, On the Hunter-Saxton system, Discrete Cont. Dyn-B, 12 (2009), 647-656. doi: 10.3934/dcdsb.2009.12.647. Google Scholar

[30]

M. Wunsch, The generalized Hunter-Saxton system, SIAM J. Math. Anal., 42 (2010), 1286-1304. doi: 10.1137/090768576. Google Scholar

[31]

H. Wu and M. Wunsch, Global existence for the generalized two-component Hunter-Saxton system, J. Math. Fluid Mech., 14 (2012), 455-469. doi: 10.1007/s00021-011-0075-9. Google Scholar

[1]

Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641

[2]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[3]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

[4]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[5]

Yongsheng Mi, Chunlai Mu, Pan Zheng. On the Cauchy problem of the modified Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2047-2072. doi: 10.3934/dcdss.2016084

[6]

Marcus Wunsch. On the Hunter--Saxton system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 647-656. doi: 10.3934/dcdsb.2009.12.647

[7]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[8]

Qunying Zhang, Zhigui Lin. Blowup, global fast and slow solutions to a parabolic system with double fronts free boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 429-444. doi: 10.3934/dcdsb.2012.17.429

[9]

Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani. On the global regularity of axisymmetric Navier-Stokes-Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 737-756. doi: 10.3934/dcds.2011.29.737

[10]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[11]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

[12]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[13]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[14]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[15]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[16]

Zaihui Gan, Boling Guo, Jian Zhang. Sharp threshold of global existence for the generalized Davey-Stewartson system in $R^2$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 913-922. doi: 10.3934/cpaa.2009.8.913

[17]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[18]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

[19]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[20]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (64)
  • Cited by (0)

[Back to Top]