[1]
|
L. Allen, B. Bolker, Y. Lou and A. Nevai, Asymptotic profiles of the steady states for an sis epidemic patch model, SIAM Journal on Applied Mathematics, 67 (2007), 1283-1309.
doi: 10.1137/060672522.
|
[2]
|
S. Banerjee, R. Keval and S. Gakkhar, Modeling the dynamics of hepatitis c virus with combined antiviral drug therapy: Interferon and ribavirin, Mathematical Biosciences, 245 (2013), 235-248.
doi: 10.1016/j.mbs.2013.07.005.
|
[3]
|
M. Barczy and G. Pap, Portmanteau theorem for unbounded measures, Statistics and Probability Letters, 76 (2006), 1831-1835.
doi: 10.1016/j.spl.2006.04.025.
|
[4]
|
B. Berrhazi, M. E. Fatini, T. Caraballo and R. Pettersson, A stochastic siri epidemic model with lévy noise, Discrete and Continuous Dynamical Systems-B, 23 (2018), 2415-2431.
doi: 10.3934/dcdsb.2018057.
|
[5]
|
G. Blé, L. Esteva and A. Peregrino, Global analysis of a mathematical model for hepatitis c considering the host immune system, Journal of Mathematical Analysis and Applications, 461 (2018), 1378-1390.
doi: 10.1016/j.jmaa.2018.01.050.
|
[6]
|
T. Britton and A. Traoré, A stochastic vector-borne epidemic model: Quasi-stationarity and extinction, Mathematical Biosciences, 289 (2017), 89-95.
doi: 10.1016/j.mbs.2017.05.004.
|
[7]
|
Y. Cai, Y. Kang, M. Banerjee and W. Wang, A stochastic sirs epidemic model with infectious force under intervention strategies, Journal of Differential Equations, 259 (2015), 7463-7502.
doi: 10.1016/j.jde.2015.08.024.
|
[8]
|
T. Caraballo, M. E. Fatini, R. Pettersson and R. Taki, A stochastic siri epidemic model with relapse and media coverage, Discrete and Continuous Dynamical Systems-B, 23 (2018), 3483-3501.
doi: 10.3934/dcdsb.2018250.
|
[9]
|
Z. Chang, X. Meng and T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic sis system with multiplicative noise, Applied Mathematics Letters, 87 (2019), 80-86.
doi: 10.1016/j.aml.2018.07.014.
|
[10]
|
N. Dalal, D. Greenhalgh and X. Mao, A stochastic model for internal hiv dynamics, Journal of Mathematical Analysis and Applications, 341 (2008), 1084-1101.
doi: 10.1016/j.jmaa.2007.11.005.
|
[11]
|
N. T. Dieu, D. H. Nguyen, N. H. Du and G. Yin, Classification of asymptotic behavior in a stochastic sir model, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1062-1084.
doi: 10.1137/15M1043315.
|
[12]
|
N. M. Dixit, J. E. Layden-Almer, T. J. Layden and A. S. Perelson, Modelling how ribavirin improves interferon response rates in hepatitis c virus infection, Nature, 432 (2004), 922-924.
doi: 10.1038/nature03153.
|
[13]
|
T. Feng, Z. Qiu and X. Meng, Analysis of a stochastic recovery-relapse epidemic model with periodic parameters and media coverage, Journal of Applied Analysis and Computation, 9 (2019), 1-15.
doi: 10.11948/2156-907X.20180231.
|
[14]
|
T. Feng and Z. Qiu, Global dynamics of deterministic and stochastic epidemic systems with nonmonotone incidence rate, International Journal of Biomathematics, 11 (2018), Paper No. 1850101, 24 pp.
doi: 10.1142/S1793524518501012.
|
[15]
|
T. Feng and Z. Qiu, Global analysis of a stochastic tb model with vaccination and treatment, Discrete and Continuous Dynamical Systems-B, 24 (2019), 2923-2939.
doi: 10.3934/dcdsb.2018292.
|
[16]
|
T. Feng, Z. Qiu, X. Meng and L. Rong, Analysis of a stochastic hiv-1 infection model with degenerate diffusion, Applied Mathematics and Computation, 348 (2019), 437-455.
doi: 10.1016/j.amc.2018.12.007.
|
[17]
|
Z. Feng and H. Thieme, Endemic models with arbitrarily distributed periods of infection ii: Fast disease dynamics and permanent recovery, SIAM Journal on Applied Mathematics, 61 (2000), 983-1012.
doi: 10.1137/S0036139998347846.
|
[18]
|
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.
doi: 10.1137/S0036144500378302.
|
[19]
|
S. Jerez, S. Díaz-Infante and B. Chen, Fluctuating periodic solutions and moment boundedness of a stochastic model for the bone remodeling process, Mathematical Biosciences, 299 (2018), 153-164.
doi: 10.1016/j.mbs.2018.03.006.
|
[20]
|
J. Jiang and Z. Qiu, The complete classification for dynamics in a nine-dimensional west nile virus model, SIAM Journal on Applied Mathematics, 69 (2009), 1205-1227.
doi: 10.1137/070709438.
|
[21]
|
J. Jiang, Z. Qiu, J. Wu and H. Zhu, Threshold conditions for west nile virus outbreaks, Bulletin of Mathematical Biology, 71 (2009), 627-647.
doi: 10.1007/s11538-008-9374-6.
|
[22]
|
R. Khasminskii, Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability, 66. Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-23280-0.
|
[23]
|
D. Li, J. Cui, M. Liu and S. Liu, The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bulletin of Mathematical Biology, 77 (2015), 1705-1743.
doi: 10.1007/s11538-015-0101-9.
|
[24]
|
M. Liu and C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, Journal of Mathematical Biology, 73 (2016), 597-625.
doi: 10.1007/s00285-016-0970-z.
|
[25]
|
X. Mao, G. Marion and E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0.
|
[26]
|
X. Meng, S. Zhao, T. Feng and T. Zhang, Dynamics of a novel nonlinear stochastic sis epidemic model with double epidemic hypothesis, Journal of Mathematical Analysis and Applications, 433 (2016), 227-242.
doi: 10.1016/j.jmaa.2015.07.056.
|
[27]
|
A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden and A. S. Perelson, Hepatitis c viral dynamics in vivo and the antiviral efficacy of interferon-$\alpha$ therapy, Science, 282 (1998), 103-107.
|
[28]
|
Z. Qiu, M. Y. Li and Z. Shen, Global dynamics of an infinite dimensional epidemic model with nonlocal state structures, Journal of Differential Equations, 265 (2018), 5262-5296.
doi: 10.1016/j.jde.2018.06.036.
|
[29]
|
L. Rong, R. M. Ribeiro and A. S. Perelson, Modeling quasispecies and drug resistance in hepatitis c patients treated with a protease inhibitor, Bulletin of Mathematical Biology, 74 (2012), 1789-1817.
doi: 10.1007/s11538-012-9736-y.
|
[30]
|
I. Rusyn and S. M. Lemon, Mechanisms of hcv-induced liver cancer: What did we learn from in vitro and animal studies?, Cancer Letters, 345 (2014), 210-215.
doi: 10.1016/j.canlet.2013.06.028.
|
[31]
|
S. Sengupta, P. Das and D. Mukherjee, Stochastic non-autonomous holling type- prey-predator model with predator's intra-specific competition, Discrete and Continuous Dynamical Systems-B, 23 (2018), 3275-3296.
doi: 10.3934/dcdsb.2018244.
|
[32]
|
C. W. Shepard, L. Finelli and M. J. Alter, Global epidemiology of hepatitis c virus infection, The Lancet Infectious Diseases, 5 (2005), 558-567.
doi: 10.1016/S1473-3099(05)70216-4.
|
[33]
|
A. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Translations of Mathematical Monographs, 78. American Mathematical Society, Providence, RI, 1989.
|
[34]
|
B. Stephenson, C. Lanzas, S. Lenhart and J. Day, Optimal control of vaccination rate in an epidemiological model of clostridium difficile transmission, Journal of Mathematical Biology, 75 (2017), 1693-1713.
doi: 10.1007/s00285-017-1133-6.
|
[35]
|
Q. Yang, D. Jiang, N. Shi and C. Ji, The ergodicity and extinction of stochastically perturbed sir and seir epidemic models with saturated incidence, Journal of Mathematical Analysis and Applications, 388 (2012), 248-271.
doi: 10.1016/j.jmaa.2011.11.072.
|
[36]
|
S. Zhang, X. Meng, T. Feng and T. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Analysis: Hybrid Systems, 26 (2017), 19-37.
doi: 10.1016/j.nahs.2017.04.003.
|
[37]
|
Y. Zhang, K. Fan, S. Gao and S. Chen, A remark on stationary distribution of a stochastic sir epidemic model with double saturated rates, Applied Mathematics Letters, 76 (2018), 46-52.
doi: 10.1016/j.aml.2017.08.002.
|
[38]
|
Y. Zhao, S. Yuan and J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bulletin of Mathematical Biology, 77 (2015), 1285-1326.
doi: 10.1007/s11538-015-0086-4.
|
[39]
|
C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM Journal on Control and Optimization, 46 (2007), 1155-1179.
doi: 10.1137/060649343.
|