[1]
|
D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to turing spatial patterns, Ecology, 83 (2002), 28-34.
|
[2]
|
G. Beylkin, J. M. Keiser and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, Journal of Computational Physics, 147 (1998), 362-387.
doi: 10.1006/jcph.1998.6093.
|
[3]
|
S. Chen and Y.-T. Zhang, Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods, Journal of Computational Physics, 230 (2011), 4336-4352.
doi: 10.1016/j.jcp.2011.01.010.
|
[4]
|
S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002), 430-455.
doi: 10.1006/jcph.2002.6995.
|
[5]
|
P. D. Dale, J. A. Sherratt and P. K. Maini, Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing, Bulletin of mathematical biology, 59 (1997), 1077-1100.
doi: 10.1007/BF02460102.
|
[6]
|
Q. Du and W. Zhu, Stability analysis and application of the exponential time differencing schemes, Journal of Computational Mathematics, 22 (2014), 200-209.
|
[7]
|
Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numerical Mathematics, 45 (2005), 307-328.
doi: 10.1007/s10543-005-7141-8.
|
[8]
|
A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B.-Z. Shilo and N. Barkai, Robustness of the bmp morphogen gradient in drosophila embryonic patterning, Nature, 419 (2002), 304-308.
doi: 10.1038/nature01061.
|
[9]
|
E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM Journal on Scientific and Statistical Computing, 13 (1992), 1236-1264.
doi: 10.1137/0913071.
|
[10]
|
M. Garvie and C. Trenchea, Analysis of two generic spatially extended predator-prey models, Nonlinear Anal. Real World Appl.
|
[11]
|
M. R. Garvie, Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in matlab, Bulletin of mathematical biology, 69 (2007), 931-956.
doi: 10.1007/s11538-006-9062-3.
|
[12]
|
A. Gierer and H. Meinhardt, A theory of biological pattern formation, Biological Cybernetics, 12 (1972), 30-39.
doi: 10.1007/BF00289234.
|
[13]
|
M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 34 (1997), 1911-1925.
doi: 10.1137/S0036142995280572.
|
[14]
|
M. Hochbruck and A. Ostermann, Explicit exponential Runge–Kutta methods for semilinear parabolic problems, SIAM Journal on Numerical Analysis, 43 (2005), 1069-1090.
doi: 10.1137/040611434.
|
[15]
|
M. Hochbruck and A. Ostermann, Exponential Runge–Kutta methods for parabolic problems, Applied Numerical Mathematics, 53 (2005), 323-339.
doi: 10.1016/j.apnum.2004.08.005.
|
[16]
|
M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19 (2010), 209-286.
doi: 10.1017/S0962492910000048.
|
[17]
|
E. E. Holmes, M. A. Lewis, J. Banks and R. Veit, Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.
doi: 10.2307/1939378.
|
[18]
|
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1966.
|
[19]
|
T. Jiang and Y.-T. Zhang, Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection–diffusion–reaction equations, Journal of Computational Physics, 253 (2013), 368-388.
doi: 10.1016/j.jcp.2013.07.015.
|
[20]
|
T. Jiang and Y.-T. Zhang, Krylov single-step implicit integration factor WENO methods for advection–diffusion–reaction equations, Journal of Computational Physics, 311 (2016), 22-44.
doi: 10.1016/j.jcp.2016.01.021.
|
[21]
|
L. Ju, X. Liu and W. Leng, Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 1667-1687.
doi: 10.3934/dcdsb.2014.19.1667.
|
[22]
|
L. Ju, J. Zhang, L. Zhu and Q. Du, Fast explicit integration factor methods for semilinear parabolic equations, Journal of Scientific Computing, 62 (2015), 431-455.
doi: 10.1007/s10915-014-9862-9.
|
[23]
|
A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM Journal on Scientific Computing, 26 (2005), 1214-1233.
doi: 10.1137/S1064827502410633.
|
[24]
|
A. Kicheva, P. Pantazis, T. Bollenbach, Y. Kalaidzidis, T. Bittig, F. Jülicher and M. Gonzalez-Gaitan, Kinetics of morphogen gradient formation, Science, 315 (2007), 521-525.
doi: 10.1126/science.1135774.
|
[25]
|
J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, John Wiley & Sons, Inc., 1991.
|
[26]
|
A. D. Lander, Q. Nie and F. Y. Wan, Do morphogen gradients arise by diffusion?, Developmental cell, 2 (2002), 785-796.
|
[27]
|
S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, vol. 45, Springer-Verlag, Berlin, 2003.
|
[28]
|
X. Liu and Q. Nie, Compact integration factor methods for complex domains and adaptive mesh refinement, Journal of Computational Physics, 229 (2010), 5692-5706.
doi: 10.1016/j.jcp.2010.04.003.
|
[29]
|
D. Lu and Y.-T. Zhang, Krylov integration factor method on sparse grids for high spatial dimension convection–diffusion equations, Journal of Scientific Computing, 69 (2016), 736-763.
doi: 10.1007/s10915-016-0216-7.
|
[30]
|
D. Lu and Y.-T. Zhang, Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection–diffusion problems, Journal of Scientific Computing, 73 (2017), 980-1027.
doi: 10.1007/s10915-017-0398-7.
|
[31]
|
M. Machen and Y.-T. Zhang, Krylov implicit integration factor methods for semilinear fourth-order equations, Mathematics, 5 (2017), 63.
doi: 10.3390/math5040063.
|
[32]
|
R. E. Mickens, Nonstandard finite difference schemes for reaction-diffusion equations, Numerical Methods for Partial Differential Equations, 15 (1999), 201-214.
doi: 10.1002/(SICI)1098-2426(199903)15:2<201::AID-NUM5>3.0.CO;2-H.
|
[33]
|
Q. Nie, F. Y. Wan, Y.-T. Zhang and X. Liu, Compact integration factor methods in high spatial dimensions, Journal of Computational Physics, 227 (2008), 5238-5255.
doi: 10.1016/j.jcp.2008.01.050.
|
[34]
|
Q. Nie, Y.-T. Zhang and R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006), 521-537.
doi: 10.1016/j.jcp.2005.09.030.
|
[35]
|
S. V. Petrovskii and H. Malchow, A minimal model of pattern formation in a prey-predator system, Mathematical and Computer Modelling, 29 (1999), 49-63.
doi: 10.1016/S0895-7177(99)00070-9.
|
[36]
|
S. V. Petrovskii and H. Malchow, Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics, Theoretical population biology, 59 (2001), 157-174.
doi: 10.1006/tpbi.2000.1509.
|
[37]
|
H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-96807-5.
|
[38]
|
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 29 (1992), 209-228.
doi: 10.1137/0729014.
|
[39]
|
J. C. Schulze, P. J. Schmid and J. L. Sesterhenn, Exponential time integration using Krylov subspaces, International Journal for Numerical Methods in Fluids, 60 (2009), 591-609.
doi: 10.1002/fld.1902.
|
[40]
|
C. Ta, D. Wang and Q. Nie, An integration factor method for stochastic and stiff reaction–diffusion systems, Journal of Computational Physics, 295 (2015), 505-522.
doi: 10.1016/j.jcp.2015.04.028.
|
[41]
|
J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Mathematics, 33. Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-0569-2.
|
[42]
|
A. M. Turing, The chemical basis of morphogenesis, Bulletin of mathematical biology, 52 (1990), 153-197.
|
[43]
|
C. Van Loan, Computational Frameworks for the Fast FOurier Transform, vol. 10, SIAM, 1992.
doi: 10.1137/1.9781611970999.
|
[44]
|
D. Wang, W. Chen and Q. Nie, Semi-implicit integration factor methods on sparse grids for high-dimensional systems, Journal of Computational Physics, 292 (2015), 43-55.
doi: 10.1016/j.jcp.2015.03.033.
|
[45]
|
D. Wang, L. Zhang and Q. Nie, Array-representation integration factor method for high-dimensional systems, Journal of Computational Physics, 258 (2014), 585-600.
doi: 10.1016/j.jcp.2013.11.002.
|
[46]
|
O. Wartlick, A. Kicheva and M. González-Gaitán, Morphogen gradient formation, Cold Spring Harbor perspectives in biology, 1 (2009), a001255.
doi: 10.1101/cshperspect.a001255.
|
[47]
|
A.-M. Wazwaz, Partial Differential Equations, CRC Press, 2002.
|
[48]
|
A. Wiegmann, Fast Poisson, fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds, Lawrence Berkeley National Laboratory.
doi: 10.2172/982430.
|
[49]
|
S. R. Yu, M. Burkhardt, M. Nowak, J. Ries, Z. Petrášek, S. Scholpp, P. Schwille and M. Brand, Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules, Nature, 461 (2009), 533-536.
doi: 10.1038/nature08391.
|
[50]
|
L. Zhang, A. D. Lander and Q. Nie, A reaction–diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts, BMC Systems Biology, 6 (2012), 93.
doi: 10.1186/1752-0509-6-93.
|
[51]
|
S. Zhao, J. Ovadia, X. Liu, Y.-T. Zhang and Q. Nie, Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems, Journal of Computational Physics, 230 (2011), 5996-6009.
doi: 10.1016/j.jcp.2011.04.009.
|
[52]
|
L. Zhu, L. Ju and W. Zhao, Fast high-order compact exponential time differencing runge–kutta methods for second-order semilinear parabolic equations, Journal of Scientific Computing, 67 (2016), 1043-1065.
doi: 10.1007/s10915-015-0117-1.
|
[53]
|
Y.-L. Zhu, X. Wu, I.-L. Chern and Z.-Z. Sun, Derivative Securities and Difference Methods, Springer, 2004.
doi: 10.1007/978-1-4757-3938-1.
|