December  2019, 24(12): 6419-6444. doi: 10.3934/dcdsb.2019145

Global bounded and unbounded solutions to a chemotaxis system with indirect signal production

Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, F–31062 Toulouse Cedex 9, France

Received  October 2018 Revised  February 2019 Published  July 2019

The well-posedness of a chemotaxis system with indirect signal production in a two-dimensional domain is shown, all solutions being global unlike for the classical Keller-Segel chemotaxis system. Nevertheless, there is a threshold value $ M_c $ of the mass of the first component which separates two different behaviours: solutions are bounded when the mass is below $ M_c $ while there are unbounded solutions starting from initial conditions having a mass exceeding $ M_c $. This result extends to arbitrary two-dimensional domains a previous result of Tao & Winkler (2017) obtained for radially symmetric solutions to a simplified version of the model in a ball and relies on a different approach involving a Liapunov functional.

Citation: Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145
References:
[1]

H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.  doi: 10.1007/BF02774019.  Google Scholar

[2]

H. Amann, Highly degenerate quasilinear parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 18 (1991), 135-166.   Google Scholar

[3]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9–126. Teubner, Stuttgart, 1993. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[4]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, volume 89 of Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.  Google Scholar

[6]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[7]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[8]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math., 66 (1993), 319-334.  doi: 10.4064/cm-66-2-319-334.  Google Scholar

[9]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential Geom., 27 (1988), 259-296.  doi: 10.4310/jdg/1214441783.  Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[11]

D. Horstmann, The nonsymmetric case of the Keller-Segel model in chemotaxis: Some recent results, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 399-423.  doi: 10.1007/PL00001455.  Google Scholar

[12]

D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller-Segel model, J. Math. Biol., 44 (2002), 463-478.  doi: 10.1007/s002850100134.  Google Scholar

[13]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[14]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[15]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[16]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.   Google Scholar

[17]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.  doi: 10.1155/S1025583401000042.  Google Scholar

[18]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

J. A. PowellT. McMillen and P. White, Connecting a chemotactic model for mass attack to a rapid integro-difference emulation strategy, SIAM J. Appl. Math., 59 (1999), 547-572.  doi: 10.1137/S0036139996313459.  Google Scholar

[21]

T. Senba and T. Suzuki, Blowup behavior of solutions to the rescaled Jäger-Luckhaus system, Adv. Differential Equations, 8 (2003), 787-820.   Google Scholar

[22]

S. StrohmR. C. Tyson and J. A. Powell, Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.  doi: 10.1007/s11538-013-9868-8.  Google Scholar

[23]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[24]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc. (JEMS), 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.  Google Scholar

[25]

P. White and J. Powell, Spatial invasion of pine beetles into lodgepole forests: A numerical approach, SIAM J. Sci. Comput., 20 (1998), 164-184.  doi: 10.1137/S1064827596297550.  Google Scholar

show all references

References:
[1]

H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.  doi: 10.1007/BF02774019.  Google Scholar

[2]

H. Amann, Highly degenerate quasilinear parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 18 (1991), 135-166.   Google Scholar

[3]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9–126. Teubner, Stuttgart, 1993. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[4]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, volume 89 of Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.  Google Scholar

[6]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[7]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[8]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math., 66 (1993), 319-334.  doi: 10.4064/cm-66-2-319-334.  Google Scholar

[9]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential Geom., 27 (1988), 259-296.  doi: 10.4310/jdg/1214441783.  Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[11]

D. Horstmann, The nonsymmetric case of the Keller-Segel model in chemotaxis: Some recent results, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 399-423.  doi: 10.1007/PL00001455.  Google Scholar

[12]

D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller-Segel model, J. Math. Biol., 44 (2002), 463-478.  doi: 10.1007/s002850100134.  Google Scholar

[13]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[14]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[15]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[16]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.   Google Scholar

[17]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.  doi: 10.1155/S1025583401000042.  Google Scholar

[18]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

J. A. PowellT. McMillen and P. White, Connecting a chemotactic model for mass attack to a rapid integro-difference emulation strategy, SIAM J. Appl. Math., 59 (1999), 547-572.  doi: 10.1137/S0036139996313459.  Google Scholar

[21]

T. Senba and T. Suzuki, Blowup behavior of solutions to the rescaled Jäger-Luckhaus system, Adv. Differential Equations, 8 (2003), 787-820.   Google Scholar

[22]

S. StrohmR. C. Tyson and J. A. Powell, Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.  doi: 10.1007/s11538-013-9868-8.  Google Scholar

[23]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[24]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc. (JEMS), 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.  Google Scholar

[25]

P. White and J. Powell, Spatial invasion of pine beetles into lodgepole forests: A numerical approach, SIAM J. Sci. Comput., 20 (1998), 164-184.  doi: 10.1137/S1064827596297550.  Google Scholar

[1]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (120)
  • HTML views (221)
  • Cited by (0)

Other articles
by authors

[Back to Top]