December  2019, 24(12): 6465-6480. doi: 10.3934/dcdsb.2019147

Traveling waves in a chemotaxis model with logistic growth

Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

* Corresponding author: Jeungeun Park

Received  November 2018 Revised  January 2019 Published  July 2019

Traveling wave solutions of a chemotaxis model with a reaction term are studied. We investigate the existence and non-existence of traveling wave solutions in certain ranges of parameters. Particularly for a positive rate of chemical growth, we prove the existence of a heteroclinic orbit by constructing a positively invariant set in the three dimensional space. The monotonicity of traveling waves is also analyzed in terms of chemotaxis, reaction and diffusion parameters. Finally, the traveling wave solutions are shown to be linearly unstable.

Citation: Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147
References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 40 (1975), 341-356.   Google Scholar

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.  doi: 10.1126/science.166.3913.1588.  Google Scholar

[3]

S. AiW. Huang and Z. A. Wang, Reaction, diffusion and chemotaxis in wave propagation, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 1-21.  doi: 10.3934/dcdsb.2015.20.1.  Google Scholar

[4]

S. Ai and Z. A. Wang, Traveling bands for the Keller-Segel model with population growth, Math. Biosci. Eng., 12 (2015), 717-737.  doi: 10.3934/mbe.2015.12.717.  Google Scholar

[5]

F. R. Gantmacher, The Theory of Matrices, Vols. 1, 2. Translated by K. A. Hirsch Chelsea Publishing Co., New York, 1959.  Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol. 180, Springer-Verlag, New York/Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[9]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25.  doi: 10.1007/s00332-003-0548-y.  Google Scholar

[10]

H.-Y. Jin, J. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193–219. doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[13]

A. KolmogorovI. Petrovskii and N. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem, Moscow University Mathematics Bulletin, 1 (1937), 1-26.   Google Scholar

[14]

T. LiH. Liu and L. Wang, Oscillatory traveling wave solutions to an attractive chemotaxis system, J. Differential Equations, 261 (2016), 7080-7098.  doi: 10.1016/j.jde.2016.09.012.  Google Scholar

[15]

T. Li and Z.-A. Wang, Nonlinear stability of traveling Waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[16]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-361.  doi: 10.1007/s00285-009-0317-0.  Google Scholar

[17]

G. NadinB. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher birth terms, Interfaces Free Bound, 10 (2008), 517-538.  doi: 10.4171/IFB/200.  Google Scholar

[18]

T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol., 30 (1991), 169-184.  doi: 10.1007/BF00160334.  Google Scholar

[19]

R. B. Salako and W. Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^{N}$, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 6189-6225.  doi: 10.3934/dcds.2017268.  Google Scholar

[20]

R. B. Salako and W. Shen, Existence of traveling wave solution of parabolic-parabolic chemotaxis systems, Nonlinear Anal.: Real World Appl., 42 (2018), 93-119.  doi: 10.1016/j.nonrwa.2017.12.004.  Google Scholar

[21]

D. G. Schaeffer and J. W. Cain, Ordinary Differential Equations: Basics and Beyond, Volume 65 of Texts in Applied Mathematics, Springer, 2016. doi: 10.1007/978-1-4939-6389-8.  Google Scholar

[22]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478.  doi: 10.1002/pamm.200310508.  Google Scholar

[23]

Z. A. Wang, Mathematics of traveling waves in chemotaxis -Review paper, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[24]

C. XueH. J. HwangK. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733.  doi: 10.1007/s11538-010-9586-4.  Google Scholar

show all references

References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 40 (1975), 341-356.   Google Scholar

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.  doi: 10.1126/science.166.3913.1588.  Google Scholar

[3]

S. AiW. Huang and Z. A. Wang, Reaction, diffusion and chemotaxis in wave propagation, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 1-21.  doi: 10.3934/dcdsb.2015.20.1.  Google Scholar

[4]

S. Ai and Z. A. Wang, Traveling bands for the Keller-Segel model with population growth, Math. Biosci. Eng., 12 (2015), 717-737.  doi: 10.3934/mbe.2015.12.717.  Google Scholar

[5]

F. R. Gantmacher, The Theory of Matrices, Vols. 1, 2. Translated by K. A. Hirsch Chelsea Publishing Co., New York, 1959.  Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol. 180, Springer-Verlag, New York/Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[9]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25.  doi: 10.1007/s00332-003-0548-y.  Google Scholar

[10]

H.-Y. Jin, J. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193–219. doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[13]

A. KolmogorovI. Petrovskii and N. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem, Moscow University Mathematics Bulletin, 1 (1937), 1-26.   Google Scholar

[14]

T. LiH. Liu and L. Wang, Oscillatory traveling wave solutions to an attractive chemotaxis system, J. Differential Equations, 261 (2016), 7080-7098.  doi: 10.1016/j.jde.2016.09.012.  Google Scholar

[15]

T. Li and Z.-A. Wang, Nonlinear stability of traveling Waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[16]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-361.  doi: 10.1007/s00285-009-0317-0.  Google Scholar

[17]

G. NadinB. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher birth terms, Interfaces Free Bound, 10 (2008), 517-538.  doi: 10.4171/IFB/200.  Google Scholar

[18]

T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol., 30 (1991), 169-184.  doi: 10.1007/BF00160334.  Google Scholar

[19]

R. B. Salako and W. Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^{N}$, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 6189-6225.  doi: 10.3934/dcds.2017268.  Google Scholar

[20]

R. B. Salako and W. Shen, Existence of traveling wave solution of parabolic-parabolic chemotaxis systems, Nonlinear Anal.: Real World Appl., 42 (2018), 93-119.  doi: 10.1016/j.nonrwa.2017.12.004.  Google Scholar

[21]

D. G. Schaeffer and J. W. Cain, Ordinary Differential Equations: Basics and Beyond, Volume 65 of Texts in Applied Mathematics, Springer, 2016. doi: 10.1007/978-1-4939-6389-8.  Google Scholar

[22]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478.  doi: 10.1002/pamm.200310508.  Google Scholar

[23]

Z. A. Wang, Mathematics of traveling waves in chemotaxis -Review paper, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[24]

C. XueH. J. HwangK. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733.  doi: 10.1007/s11538-010-9586-4.  Google Scholar

Figure 1.  Sketch of the compact sets: $ \mathcal{P} $ in (A) and $ \mathcal{T} $ in (B)
Figure 2.  Numerical simulations of traveling wave solutions $ (U(\xi), V(\xi)) $ of the system (1). For (A), $ D = 1, s = 2, \beta = 0.2, \mu = 1 $ and $ \chi(v) = \cos(10 v) - \sin(20 v) +2 $. For (B), $ D = 1, s = 2, \beta = 1, \mu = \frac{1}{2} $ and $ \chi(v) = \frac{1}{(1+v)^{2}}. $
[1]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[2]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[4]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[10]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[11]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[12]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[16]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[17]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[18]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (189)
  • HTML views (283)
  • Cited by (1)

Other articles
by authors

[Back to Top]