December  2019, 24(12): 6465-6480. doi: 10.3934/dcdsb.2019147

Traveling waves in a chemotaxis model with logistic growth

Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

* Corresponding author: Jeungeun Park

Received  November 2018 Revised  January 2019 Published  July 2019

Traveling wave solutions of a chemotaxis model with a reaction term are studied. We investigate the existence and non-existence of traveling wave solutions in certain ranges of parameters. Particularly for a positive rate of chemical growth, we prove the existence of a heteroclinic orbit by constructing a positively invariant set in the three dimensional space. The monotonicity of traveling waves is also analyzed in terms of chemotaxis, reaction and diffusion parameters. Finally, the traveling wave solutions are shown to be linearly unstable.

Citation: Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147
References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 40 (1975), 341-356.   Google Scholar

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.  doi: 10.1126/science.166.3913.1588.  Google Scholar

[3]

S. AiW. Huang and Z. A. Wang, Reaction, diffusion and chemotaxis in wave propagation, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 1-21.  doi: 10.3934/dcdsb.2015.20.1.  Google Scholar

[4]

S. Ai and Z. A. Wang, Traveling bands for the Keller-Segel model with population growth, Math. Biosci. Eng., 12 (2015), 717-737.  doi: 10.3934/mbe.2015.12.717.  Google Scholar

[5]

F. R. Gantmacher, The Theory of Matrices, Vols. 1, 2. Translated by K. A. Hirsch Chelsea Publishing Co., New York, 1959.  Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol. 180, Springer-Verlag, New York/Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[9]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25.  doi: 10.1007/s00332-003-0548-y.  Google Scholar

[10]

H.-Y. Jin, J. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193–219. doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[13]

A. KolmogorovI. Petrovskii and N. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem, Moscow University Mathematics Bulletin, 1 (1937), 1-26.   Google Scholar

[14]

T. LiH. Liu and L. Wang, Oscillatory traveling wave solutions to an attractive chemotaxis system, J. Differential Equations, 261 (2016), 7080-7098.  doi: 10.1016/j.jde.2016.09.012.  Google Scholar

[15]

T. Li and Z.-A. Wang, Nonlinear stability of traveling Waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[16]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-361.  doi: 10.1007/s00285-009-0317-0.  Google Scholar

[17]

G. NadinB. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher birth terms, Interfaces Free Bound, 10 (2008), 517-538.  doi: 10.4171/IFB/200.  Google Scholar

[18]

T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol., 30 (1991), 169-184.  doi: 10.1007/BF00160334.  Google Scholar

[19]

R. B. Salako and W. Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^{N}$, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 6189-6225.  doi: 10.3934/dcds.2017268.  Google Scholar

[20]

R. B. Salako and W. Shen, Existence of traveling wave solution of parabolic-parabolic chemotaxis systems, Nonlinear Anal.: Real World Appl., 42 (2018), 93-119.  doi: 10.1016/j.nonrwa.2017.12.004.  Google Scholar

[21]

D. G. Schaeffer and J. W. Cain, Ordinary Differential Equations: Basics and Beyond, Volume 65 of Texts in Applied Mathematics, Springer, 2016. doi: 10.1007/978-1-4939-6389-8.  Google Scholar

[22]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478.  doi: 10.1002/pamm.200310508.  Google Scholar

[23]

Z. A. Wang, Mathematics of traveling waves in chemotaxis -Review paper, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[24]

C. XueH. J. HwangK. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733.  doi: 10.1007/s11538-010-9586-4.  Google Scholar

show all references

References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 40 (1975), 341-356.   Google Scholar

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.  doi: 10.1126/science.166.3913.1588.  Google Scholar

[3]

S. AiW. Huang and Z. A. Wang, Reaction, diffusion and chemotaxis in wave propagation, Discrete Contin. Dyn. Syst. Series B, 20 (2015), 1-21.  doi: 10.3934/dcdsb.2015.20.1.  Google Scholar

[4]

S. Ai and Z. A. Wang, Traveling bands for the Keller-Segel model with population growth, Math. Biosci. Eng., 12 (2015), 717-737.  doi: 10.3934/mbe.2015.12.717.  Google Scholar

[5]

F. R. Gantmacher, The Theory of Matrices, Vols. 1, 2. Translated by K. A. Hirsch Chelsea Publishing Co., New York, 1959.  Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol. 180, Springer-Verlag, New York/Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[9]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25.  doi: 10.1007/s00332-003-0548-y.  Google Scholar

[10]

H.-Y. Jin, J. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193–219. doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[13]

A. KolmogorovI. Petrovskii and N. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem, Moscow University Mathematics Bulletin, 1 (1937), 1-26.   Google Scholar

[14]

T. LiH. Liu and L. Wang, Oscillatory traveling wave solutions to an attractive chemotaxis system, J. Differential Equations, 261 (2016), 7080-7098.  doi: 10.1016/j.jde.2016.09.012.  Google Scholar

[15]

T. Li and Z.-A. Wang, Nonlinear stability of traveling Waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[16]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-361.  doi: 10.1007/s00285-009-0317-0.  Google Scholar

[17]

G. NadinB. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher birth terms, Interfaces Free Bound, 10 (2008), 517-538.  doi: 10.4171/IFB/200.  Google Scholar

[18]

T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol., 30 (1991), 169-184.  doi: 10.1007/BF00160334.  Google Scholar

[19]

R. B. Salako and W. Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^{N}$, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 6189-6225.  doi: 10.3934/dcds.2017268.  Google Scholar

[20]

R. B. Salako and W. Shen, Existence of traveling wave solution of parabolic-parabolic chemotaxis systems, Nonlinear Anal.: Real World Appl., 42 (2018), 93-119.  doi: 10.1016/j.nonrwa.2017.12.004.  Google Scholar

[21]

D. G. Schaeffer and J. W. Cain, Ordinary Differential Equations: Basics and Beyond, Volume 65 of Texts in Applied Mathematics, Springer, 2016. doi: 10.1007/978-1-4939-6389-8.  Google Scholar

[22]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478.  doi: 10.1002/pamm.200310508.  Google Scholar

[23]

Z. A. Wang, Mathematics of traveling waves in chemotaxis -Review paper, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[24]

C. XueH. J. HwangK. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733.  doi: 10.1007/s11538-010-9586-4.  Google Scholar

Figure 1.  Sketch of the compact sets: $ \mathcal{P} $ in (A) and $ \mathcal{T} $ in (B)
Figure 2.  Numerical simulations of traveling wave solutions $ (U(\xi), V(\xi)) $ of the system (1). For (A), $ D = 1, s = 2, \beta = 0.2, \mu = 1 $ and $ \chi(v) = \cos(10 v) - \sin(20 v) +2 $. For (B), $ D = 1, s = 2, \beta = 1, \mu = \frac{1}{2} $ and $ \chi(v) = \frac{1}{(1+v)^{2}}. $
[1]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[2]

Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences & Engineering, 2007, 4 (2) : 187-203. doi: 10.3934/mbe.2007.4.187

[3]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[4]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[5]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[6]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[7]

Matthew S. Mizuhara, Peng Zhang. Uniqueness and traveling waves in a cell motility model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2811-2835. doi: 10.3934/dcdsb.2018315

[8]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[9]

Zhi-An Wang. Mathematics of traveling waves in chemotaxis --Review paper--. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 601-641. doi: 10.3934/dcdsb.2013.18.601

[10]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[11]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[12]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[13]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[14]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[15]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[16]

Michiel Bertsch, Masayasu Mimura, Tohru Wakasa. Modeling contact inhibition of growth: Traveling waves. Networks & Heterogeneous Media, 2013, 8 (1) : 131-147. doi: 10.3934/nhm.2013.8.131

[17]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[18]

Toshi Ogawa. Degenerate Hopf instability in oscillatory reaction-diffusion equations. Conference Publications, 2007, 2007 (Special) : 784-793. doi: 10.3934/proc.2007.2007.784

[19]

Tai-Chia Lin, Zhi-An Wang. Development of traveling waves in an interacting two-species chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2907-2927. doi: 10.3934/dcds.2014.34.2907

[20]

Wenzhang Huang. Weakly coupled traveling waves for a model of growth and competition in a flow reactor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 79-87. doi: 10.3934/mbe.2006.3.79

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (99)
  • HTML views (220)
  • Cited by (0)

Other articles
by authors

[Back to Top]