\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-oscillation principle for eventually competitive and cooperative systems

This work is partially supported by NSF of China No.11825106, 11771414 and Wu Wen-Tsun Key Laboratory

Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • A nonlinear dynamical system is called eventually competitive (or cooperative) provided that it preserves a partial order in backward (or forward) time only after some reasonable initial transient. We present in this paper the Non-oscillation Principle for eventually competitive or cooperative systems, by which the non-ordering of (both $ \omega $- and $ \alpha $-) limit sets is obtained for such systems; and moreover, we established the Poincaré-Bendixson Theorem and structural stability for three-dimensional eventually competitive and cooperative systems.

    Mathematics Subject Classification: Primary: 34C12, 37C65; Secondary: 58F09, 92A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The intervals $ I_{n} = [t_{0}+nA, b+t_{*}+nA] = [t_n, t_n+E] $ for $ n\in \mathbb{N} $, where $ E = \vert I_n\vert = \vert I_0\vert $ and $ [a, b] $ is the rising interval

    Figure 2.  Case (Ⅰ) with $ n_{0}D_{0}\in [A-E, A] $, where $ c_{n_{0}}\in [t_{n_{0}(k_{0}+1)-1}, t_{n_{0}(k_{0}+1)-1}+E] = I_{n_0(k_0+1)-1} $ with $ n_{0} = 3, k_{0} = 1, l_{*} = 3 $ and $ n_{*} = 5 $

    Figure 3.  Case (Ⅱ) with $ n_{0}D_{0}>A $, where $ c_{n_{0}} = t_{n_0(k_0+1)-1}-D_1\in (t_{n_{0}(k_{0}+1)-2}+E, t_{n_{0}(k_{0}+1)-1}) $ and $ c_{n\cdot n_0} = t_{n\cdot[n_0(k_0+1)-1]}-nD_1 $, with $ n_{0} = n = 2 $, $ k_{0} = 1 $ and $ D_1 = n_0D_0-A $

  • [1] C. Altafini, Representing externally positive systems through minimal eventually positive realizations, in Proc IEEE Conf Decision Control, (2015), 6385–6390. doi: 10.1109/CDC.2015.7403225.
    [2] C. Altafini and G. Lini, Predictable dynamics of opinion forming for networks with antagonistic interactions, IEEE Trans. Autom. Control, 60 (2015), 342-357.  doi: 10.1109/TAC.2014.2343371.
    [3] D. Angeli and E. Sontag, Monotone control systems, IEEE Trans. Autom. Control, 48 (2003), 1684-1698.  doi: 10.1109/TAC.2003.817920.
    [4] D. Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator, Positivity, 18 (2014), 235-256.  doi: 10.1007/s11117-013-0243-7.
    [5] D. DanersJ. Glück and J. B. Kennedy, Eventually positive semigroups of linear operators, J. Math. Anal. Appl., 433 (2016), 1561-1593.  doi: 10.1016/j.jmaa.2015.08.050.
    [6] D. DanersJ. Glück and J. B. Kennedy, Eventually and asymptotically positive semigroups on Banach lattices, J. Diff. Eqns., 261 (2016), 2607-2649.  doi: 10.1016/j.jde.2016.05.007.
    [7] A. FerreroF. Gazzola and H.-C. Grunau, Decay and eventual local positivity for biharmonic parabolic equations, Discrete Contin. Dyn. Syst., 21 (2008), 1129-1157.  doi: 10.3934/dcds.2008.21.1129.
    [8] F. Gazzola and H.-C. Grunau, Eventual local positivity for a biharmonic heat equation in $\mathbb{R}^{n}$, Discrete Contin. Dyn. Syst.-S, 1 (2008), 83-87.  doi: 10.3934/dcdss.2008.1.83.
    [9] M. W. Hirsch, Systems of differential equations which are competitive or cooperative Ⅰ: limit sets, SIAM J. Appl. Math., 13 (1982), 167-179.  doi: 10.1137/0513013.
    [10] M. W. Hirsch, Systems of differential equations which are competitive or cooperative Ⅱ: convergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423-439.  doi: 10.1137/0516030.
    [11] M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.  doi: 10.1515/crll.1988.383.1.
    [12] M. W. Hirsch, Systems of differential equations which are competitive or cooperative Ⅳ: Structural stability in three dimensional systems, SIAM J. Math. Anal., 21 (1990), 1225-1234.  doi: 10.1137/0521067.
    [13] M. W. Hirsch and H. L. Smith, Monotone Systems, A Mini-review, Proceedings of the First Multidisciplinary Symposium on Positive Systems (POSTA 2003), Luca Benvenuti, Alberto De Santis and Lorenzo Farina (Eds.) Lecture Notes on Control and Information Sciences vol. 294, Springer-Verlag, Heidelberg, 2003. doi: 10.1007/b79667.
    [14] M. W. Hirsch and H. L. Smith, Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, Vol. Ⅱ, 239–357, Elsevier B. V., Amsterdam, 2005.
    [15] W. W. Leontief, Input-output Economics, Oxford University Press on Demand, 1986. doi: 10.1038/scientificamerican1051-15.
    [16] L. Markus, Structurally stable dynamical systems, Ann. of Math., 73 (1961), 1-19.  doi: 10.2307/1970280.
    [17] S. Newhouse, Nondensity of axiom A(a) on $S^{2}$, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 191–202 Amer. Math. Soc., Providence, R.I. 1970.
    [18] S. Newhouse, Lectures on dynamical systems, Progress in Math., 8 (1980), 1-114. 
    [19] L. Niu and Y. Wang, Singularly perturbed competitive systems and applications, preprint.
    [20] D. Noutsos and M. J. Tsatsomeros, Reachability and holdability of nonnegative states, SIAM J. Matrix Anal. Appl., 30 (2008), 700-712.  doi: 10.1137/070693850.
    [21] D. D. OleskyM. J. Tsatsomeros and P. van den Driessche, $M_v$-matrices: A generalization of M-matrices based on eventually nonnegative matrices, Electron. J. Linear Algebra, 18 (2009), 339-351.  doi: 10.13001/1081-3810.1317.
    [22] J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1968), 385-404.  doi: 10.1016/0040-9383(69)90024-X.
    [23] S. Smale, Morse inequalities for a dynamical system, Bull. Amer. Math. Soc., 66 (1960), 43-49.  doi: 10.1090/S0002-9904-1960-10386-2.
    [24] H. L. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys and Monographs, 41, Amer. Math. Soc., Providence, Rhode Island 1995.
    [25] H. L. Smith, Monotone dynamical systems: Reflections on new advances and applications, Discrete Contin. Dyn. Syst., 37 (2017), 485-504.  doi: 10.3934/dcds.2017020.
    [26] H. L. Smith and  P. WaltmanThe Theory of the Chemostat, Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511530043.
    [27] E. D. Sontag, Monotone and near-monotone biochemical networks, Syst. Synthetic Biol., 1 (2007), 59-87. 
    [28] A. Sootla and A. Mauroy, Operator-Theoretic Characterization of Eventually Monotone Systems, preprint, arXiv: 1510.01149.
    [29] ER. Stern and H. Wolkowicz, Exponential nonnegativity on the ice cream cone, SIAM J. Matrix Anal. Appl., 12 (1991), 160-165.  doi: 10.1137/0612012.
    [30] Y. Wang and J. Jiang, The general properties of discrete-time competitive dynamical systems, J. Diff. Eqns, 176 (2001), 470-493.  doi: 10.1006/jdeq.2001.3989.
    [31] L. Wang and E. D. Sontag, Singularly perturbed monotone systems and an application to double phosphorylation cycles, J. Nonlinear Sci., 18 (2008), 527-550.  doi: 10.1007/s00332-008-9021-2.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(420) PDF downloads(283) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return