
-
Previous Article
Estimating the division rate from indirect measurements of single cells
- DCDS-B Home
- This Issue
-
Next Article
Exact controllability of the linear Zakharov-Kuznetsov equation
On the 1D modeling of fluid flowing through a Junction
1. | INdAM Unit – University of Brescia, Via Branze, 38 – 25123 Brescia, Italy |
2. | Department of Mathematics and its Applications – University of Milano - Bicocca, Via R. Cozzi, 55 – 20125 Milano, Italy |
A compressible fluid flows through a junction between two different pipes. Its evolution is described by the 2D or 3D Euler equations, whose analytical theory is far from complete and whose numerical treatment may be rather costly. This note compares different 1D approaches to this phenomenon.
References:
[1] |
A. Agrawal, L. Djenidi and R. A. Antonia,
Simulation of gas flow in microchannels with a sudden expansion or contraction, Journal of Fluid Mechanics, 530 (2005), 135-144.
doi: 10.1017/S0022112005003691. |
[2] |
J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiró and S. J. Sherwin,
Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models, Internat. J. Numer. Methods Fluids, 56 (2008), 1061-1067.
doi: 10.1002/fld.1606. |
[3] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. New York, 2000. |
[4] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295–314 (electronic).
doi: 10.3934/nhm.2006.1.295. |
[5] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41–56 (electronic).
doi: 10.3934/nhm.2006.1.41. |
[6] |
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495–511 (electronic).
doi: 10.3934/nhm.2006.1.495. |
[7] |
R. M. Colombo and M. Garavello, On the $p$-system at a junction, In Control Methods in PDE-dynamical Systems, volume 426 of Cont. Math., pages 193–217. AMS, Providence, 2007.
doi: 10.1090/conm/426/08189. |
[8] |
R. M. Colombo and M. Garavello,
On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841. |
[9] |
R. M. Colombo, G. Guerra, M. Herty and V. Sachers, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050. Google Scholar |
[10] |
R. M. Colombo, M. Herty and V. Sachers,
On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298. |
[11] |
R. M. Colombo and F. Marcellini,
Smooth and discontinuous junctions in the $p$-system, J. Math. Anal. Appl., 361 (2010), 440-456.
doi: 10.1016/j.jmaa.2009.07.022. |
[12] |
J. C. de Almeida, J. A. Velásquez and R. Barbieri,
A methodology for calculating the natural gas compressibility factor for a distribution network, Petroleum Science and Technology, 32 (2014), 2616-2624.
doi: 10.1080/10916466.2012.755194. |
[13] |
J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa Novel and G. Bastin,
Boundary feedback control in networks of open channels, Automatica J. IFAC, 39 (2003), 1365-1376.
doi: 10.1016/S0005-1098(03)00109-2. |
[14] |
E. Dekama and J. Calverta,
Pressure losses in sudden transitions between square and rectangular ducts of the same cross-sectional area, Int. J. Heat Fluid Flow, 9 (1988), 2-7.
doi: 10.1016/0142-727X(88)90023-9. |
[15] |
M. Á. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs, Multiscale Model. Simul., 4 (2005), 215–236 (electronic).
doi: 10.1137/030602010. |
[16] |
L. Formaggia, D. Lamponi, A. Veneziani and D. Tuveri,
Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Computer Methods in Biomechanics and Biomedical Engineering, 9 (2006), 273-288.
doi: 10.1080/10255840600857767. |
[17] |
L. Formaggia, A. Quarteroni and A. Veneziani, editors, Cardiovascular Mathematics, volume 1 of MS & A, Springer-Verlag Italia, Milan, 2009.
doi: 10.1007/978-88-470-1152-6. |
[18] |
M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, volume 9 of AIMS Series on Applied Mathematics, AIMS, Springfield, MO, 2016. |
[19] |
P. Goatin and P. G. LeFloch,
The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902.
doi: 10.1016/j.anihpc.2004.02.002. |
[20] |
G. Guerra, F. Marcellini and V. Schleper,
Balance laws with integrable unbounded sources, SIAM J. Math. Anal., 41 (2009), 1164-1189.
doi: 10.1137/080735436. |
[21] |
M. Gugat, Nodal control of conservation laws on networks. Sensitivity calculations for the
control of systems of conservation laws with source terms on networks, Cagnol, John (ed.) et
al., Chapman & Hall/CRC. Lecture Notes in Pure and Appl. Math., 240 (2005), 201–215.
doi: 10.1201/9781420027426.ch16. |
[22] |
M. Gugat, M. Herty and S. Müller,
Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.
doi: 10.3934/nhm.2017016. |
[23] |
M. Gugat and G. Leugering,
Global boundary controllability of the de St. Venant equations between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1-11.
doi: 10.1016/S0294-1449(02)00004-5. |
[24] |
M. Herty,
Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.
doi: 10.1137/070688535. |
[25] |
M. Herty and M. Seaïd,
Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.
doi: 10.1002/fld.1531. |
[26] |
H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497–515 (electronic).
doi: 10.1137/S0036141097327033. |
[27] |
G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164–180 (electronic).
doi: 10.1137/S0363012900375664. |
[28] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied
Mathematics. Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253. |
[29] |
T.-M. Liou, C.-F. Kao and S.-M. Wu, The flow in a rectangular channel with sudden contraction and expansion, Chinese Institute of Engineers Journal, 10 (1987), 139-146. Google Scholar |
[30] |
T. P. Liu,
Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260.
doi: 10.1007/BF01976043. |
[31] |
G. Montenegro and A. Onorati, Modeling of silencers for I.C. engine intake and exhaust systems by means of an integrated 1D-multiD approach, volume 1 of SAE Int. J. Engines, pages 466–479. SAE 2008 Int. Congress & Exp., Detroit, Michigan, 2008.
doi: 10.4271/2008-01-0677. |
[32] |
E. Rathakrishnana and A. K. Sreekanthb,
Rarefied flow through sudden enlargements, Fluid Dynamics Research, 16 (1995), 131-145.
doi: 10.1016/0169-5983(95)00006-Y. |
[33] |
G. A. Reigstad, T. Flåtten, N. Erland Haugen and T. Ytrehus,
Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.
doi: 10.1142/S0219891615500022. |
[34] |
J. S. Vrentas and J. L. Duda,
Flow of a newtonian fluid through a sudden contraction, Flow, Turbulence and Combustion, 28 (1973), 241-260.
doi: 10.1007/BF00413071. |
[35] |
G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication.
doi: 10.1002/9781118032954. |
[36] |
D. E. Winterbone and R. J. Pearson, Theory of Engine Manifold Design, Professional Engineering Publishing, 2000. Google Scholar |
show all references
References:
[1] |
A. Agrawal, L. Djenidi and R. A. Antonia,
Simulation of gas flow in microchannels with a sudden expansion or contraction, Journal of Fluid Mechanics, 530 (2005), 135-144.
doi: 10.1017/S0022112005003691. |
[2] |
J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiró and S. J. Sherwin,
Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models, Internat. J. Numer. Methods Fluids, 56 (2008), 1061-1067.
doi: 10.1002/fld.1606. |
[3] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. New York, 2000. |
[4] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295–314 (electronic).
doi: 10.3934/nhm.2006.1.295. |
[5] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41–56 (electronic).
doi: 10.3934/nhm.2006.1.41. |
[6] |
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495–511 (electronic).
doi: 10.3934/nhm.2006.1.495. |
[7] |
R. M. Colombo and M. Garavello, On the $p$-system at a junction, In Control Methods in PDE-dynamical Systems, volume 426 of Cont. Math., pages 193–217. AMS, Providence, 2007.
doi: 10.1090/conm/426/08189. |
[8] |
R. M. Colombo and M. Garavello,
On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841. |
[9] |
R. M. Colombo, G. Guerra, M. Herty and V. Sachers, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050. Google Scholar |
[10] |
R. M. Colombo, M. Herty and V. Sachers,
On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298. |
[11] |
R. M. Colombo and F. Marcellini,
Smooth and discontinuous junctions in the $p$-system, J. Math. Anal. Appl., 361 (2010), 440-456.
doi: 10.1016/j.jmaa.2009.07.022. |
[12] |
J. C. de Almeida, J. A. Velásquez and R. Barbieri,
A methodology for calculating the natural gas compressibility factor for a distribution network, Petroleum Science and Technology, 32 (2014), 2616-2624.
doi: 10.1080/10916466.2012.755194. |
[13] |
J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa Novel and G. Bastin,
Boundary feedback control in networks of open channels, Automatica J. IFAC, 39 (2003), 1365-1376.
doi: 10.1016/S0005-1098(03)00109-2. |
[14] |
E. Dekama and J. Calverta,
Pressure losses in sudden transitions between square and rectangular ducts of the same cross-sectional area, Int. J. Heat Fluid Flow, 9 (1988), 2-7.
doi: 10.1016/0142-727X(88)90023-9. |
[15] |
M. Á. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs, Multiscale Model. Simul., 4 (2005), 215–236 (electronic).
doi: 10.1137/030602010. |
[16] |
L. Formaggia, D. Lamponi, A. Veneziani and D. Tuveri,
Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Computer Methods in Biomechanics and Biomedical Engineering, 9 (2006), 273-288.
doi: 10.1080/10255840600857767. |
[17] |
L. Formaggia, A. Quarteroni and A. Veneziani, editors, Cardiovascular Mathematics, volume 1 of MS & A, Springer-Verlag Italia, Milan, 2009.
doi: 10.1007/978-88-470-1152-6. |
[18] |
M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, volume 9 of AIMS Series on Applied Mathematics, AIMS, Springfield, MO, 2016. |
[19] |
P. Goatin and P. G. LeFloch,
The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902.
doi: 10.1016/j.anihpc.2004.02.002. |
[20] |
G. Guerra, F. Marcellini and V. Schleper,
Balance laws with integrable unbounded sources, SIAM J. Math. Anal., 41 (2009), 1164-1189.
doi: 10.1137/080735436. |
[21] |
M. Gugat, Nodal control of conservation laws on networks. Sensitivity calculations for the
control of systems of conservation laws with source terms on networks, Cagnol, John (ed.) et
al., Chapman & Hall/CRC. Lecture Notes in Pure and Appl. Math., 240 (2005), 201–215.
doi: 10.1201/9781420027426.ch16. |
[22] |
M. Gugat, M. Herty and S. Müller,
Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.
doi: 10.3934/nhm.2017016. |
[23] |
M. Gugat and G. Leugering,
Global boundary controllability of the de St. Venant equations between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1-11.
doi: 10.1016/S0294-1449(02)00004-5. |
[24] |
M. Herty,
Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.
doi: 10.1137/070688535. |
[25] |
M. Herty and M. Seaïd,
Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.
doi: 10.1002/fld.1531. |
[26] |
H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497–515 (electronic).
doi: 10.1137/S0036141097327033. |
[27] |
G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164–180 (electronic).
doi: 10.1137/S0363012900375664. |
[28] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied
Mathematics. Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253. |
[29] |
T.-M. Liou, C.-F. Kao and S.-M. Wu, The flow in a rectangular channel with sudden contraction and expansion, Chinese Institute of Engineers Journal, 10 (1987), 139-146. Google Scholar |
[30] |
T. P. Liu,
Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260.
doi: 10.1007/BF01976043. |
[31] |
G. Montenegro and A. Onorati, Modeling of silencers for I.C. engine intake and exhaust systems by means of an integrated 1D-multiD approach, volume 1 of SAE Int. J. Engines, pages 466–479. SAE 2008 Int. Congress & Exp., Detroit, Michigan, 2008.
doi: 10.4271/2008-01-0677. |
[32] |
E. Rathakrishnana and A. K. Sreekanthb,
Rarefied flow through sudden enlargements, Fluid Dynamics Research, 16 (1995), 131-145.
doi: 10.1016/0169-5983(95)00006-Y. |
[33] |
G. A. Reigstad, T. Flåtten, N. Erland Haugen and T. Ytrehus,
Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.
doi: 10.1142/S0219891615500022. |
[34] |
J. S. Vrentas and J. L. Duda,
Flow of a newtonian fluid through a sudden contraction, Flow, Turbulence and Combustion, 28 (1973), 241-260.
doi: 10.1007/BF00413071. |
[35] |
G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication.
doi: 10.1002/9781118032954. |
[36] |
D. E. Winterbone and R. J. Pearson, Theory of Engine Manifold Design, Professional Engineering Publishing, 2000. Google Scholar |



Meaning | ||
(L) | Conservation of linear momentum, see [7] | |
(p) | Equal pressure, typically motivated by static equilibrium, see [4,5] | |
(P) | Equal dynamic pressure, see [6,8] | |
(S) | Limit of the condition for smooth variations of the pipes' sections, see [11,20] |
Meaning | ||
(L) | Conservation of linear momentum, see [7] | |
(p) | Equal pressure, typically motivated by static equilibrium, see [4,5] | |
(P) | Equal dynamic pressure, see [6,8] | |
(S) | Limit of the condition for smooth variations of the pipes' sections, see [11,20] |
[1] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[2] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[3] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[4] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[5] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[6] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[7] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[8] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[9] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[10] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[11] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[12] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[13] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[14] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[15] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[16] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[17] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[18] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[19] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[20] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]