In this paper we investigate the center problem for the discontinuous piecewise smooth quasi–homogeneous but non–homogeneous polynomial differential systems. First, we provide sufficient and necessary conditions for the existence of a center in the discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Moreover, these centers are global, and the period function of their periodic orbits is monotonic. Second, we characterize the centers of the discontinuous piecewise smooth quasi–homogeneous cubic and quartic polynomial differential systems.
Citation: |
[1] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.
doi: 10.1088/0951-7715/22/2/009.![]() ![]() ![]() |
[2] |
A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.
![]() ![]() |
[3] |
W. Aziz, J. Llibre and C. Pantazi, Centers of quasi–homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006.![]() ![]() ![]() |
[4] |
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.
![]() ![]() |
[5] |
M. di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, A. Nordmark, G. Tost and P. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Review, 50 (2008), 629-701.
doi: 10.1137/050625060.![]() ![]() ![]() |
[6] |
H. Chen, S. Duan, Y. Tang and J. Xie, Global dynamics of a mechanical system with fry friction, J. Differential Equations, 265 (2018), 5490-5519.
doi: 10.1016/j.jde.2018.06.013.![]() ![]() ![]() |
[7] |
H. Chen and Y. Tang, At most two limit cycles in a piecewise linear differential system with three zones and asymmetry, Physica D, 386/387 (2019), 23-30.
doi: 10.1016/j.physd.2018.08.004.![]() ![]() ![]() |
[8] |
H. Dulac, Détermination et integration d'une certaine classe d'équations différentielle ayant par point singulier un centre, Bull. Sci. Math., Sér. (2), 32 (1908), 230–252.
![]() |
[9] |
F. Dumortier, J. Llibre and J. C. Artés, Qualititive Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006.
![]() ![]() |
[10] |
A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9.![]() ![]() ![]() |
[11] |
E. Freire, E. Ponce and F. Torres, Canonical discontinuous planar piecewise linear system, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.
doi: 10.1137/11083928X.![]() ![]() ![]() |
[12] |
I.A. García, H. Giacomini, J. Giné and J. Llibre, Analytic nilpotent centers as limits of nondegenerate centers revisited, J. Math. Anal. and Appl., 441 (2016), 893-899.
doi: 10.1016/j.jmaa.2016.04.046.![]() ![]() ![]() |
[13] |
B. García, J. Llibre and J. S. Pérez del Río, Planar quasihomogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032.![]() ![]() ![]() |
[14] |
J. Giné, On the centers of planar analytic differential systems, Int. J. Bifurcation and Chaos, 17 (2007), 3061-3070.
doi: 10.1142/S0218127407018865.![]() ![]() ![]() |
[15] |
J. Giné, M. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.
doi: 10.1016/j.jde.2015.08.014.![]() ![]() ![]() |
[16] |
J. Giné and J. Llibre, A method for characterizing nilpotent centers, J. Math. Anal. Appl., 413 (2014), 537-545.
doi: 10.1016/j.jmaa.2013.12.013.![]() ![]() ![]() |
[17] |
M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin-Heidelberg, 2000.
doi: 10.1007/BFb0103843.![]() ![]() ![]() |
[18] |
Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcation and Chaos, 13 (2003), 2157-2188.
doi: 10.1142/S0218127403007874.![]() ![]() ![]() |
[19] |
W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi–homegeneous centers, J. Dyn. Diff. Equat., 21 (2009), 133-152.
doi: 10.1007/s10884-008-9126-1.![]() ![]() ![]() |
[20] |
H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi–homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8.![]() ![]() ![]() |
[21] |
J. Llibre, Centers: their integrability and relations with the divergence, Appl. Math. and Nonl. Sci., 1 (2016), 79-86.
doi: 10.21042/AMNS.2016.1.00007.![]() ![]() ![]() |
[22] |
M. A. Lyapunov, Probléme Général de la Stabilité du Mouvement, Ann. of Math. Stud., Vol.
17, Princeton University Press, 1947.
![]() ![]() |
[23] |
O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.
doi: 10.1016/j.physd.2012.08.002.![]() ![]() ![]() |
[24] |
L. Mazzi and M. Sabatini, A characterization of centres via first integrals, J. Differential Equations, 76 (1988), 222-237.
doi: 10.1016/0022-0396(88)90072-1.![]() ![]() ![]() |
[25] |
R. Moussu, Symetrie et forme normale des centres et foyers degeneres, Ergodic Theory Dynam. Systems, 2 (1982), 241-251.
doi: 10.1017/s0143385700001553.![]() ![]() ![]() |
[26] |
R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields, Qual. Theory Dyn. Syst., 13 (2014), 39-72.
doi: 10.1007/s12346-013-0105-5.![]() ![]() ![]() |
[27] |
J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions, SIAM Rev., 38 (1996), 619-636.
doi: 10.1137/S0036144595283575.![]() ![]() ![]() |
[28] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. de Mathématiques, 37 (1881), 375–422; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, 3–84.
![]() |
[29] |
H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré Ⅰ and Ⅱ, Rendiconti del Circolo Matematico di Palermo, 5 (1891), 161–191; 11 (1897), 193–239.
![]() |
[30] |
G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press, New York, 1964.
![]() ![]() |
[31] |
Y. Tang, L. Wang and X. Zhang, Center of planar quintic quasi–homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.
doi: 10.3934/dcds.2015.35.2177.![]() ![]() ![]() |
[32] |
Y. Tang and X. Zhang, Global dynamics of planar quasi–homogeneous differential systems, Nonlinear Anal. Real World Appl., 49 (2019), 90-110.
doi: 10.1016/j.nonrwa.2019.02.008.![]() ![]() ![]() |
[33] |
L. Wei and X. Zhang, Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems, Discrete Contin. Dyn. Syst., 36 (2016), 2803-2825.
doi: 10.3934/dcds.2016.36.2803.![]() ![]() ![]() |
[34] |
J. Yu and L. Zhang, Center of planar quasi-homogeneous polynomial differential systems, Bull. Sci. Math., 147 (2018), 7-25.
doi: 10.1016/j.bulsci.2018.04.001.![]() ![]() ![]() |
Positive (or negative) Poincaré half-return map