December  2019, 24(12): 6511-6531. doi: 10.3934/dcdsb.2019151

Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces

Hasselt University, Faculty of Sciences, Campus Diepenbeek, Agoralaan Gebouw D, Diepenbeek 3590, Belgium

The work of the author was funded by the Center for Modelling and Simulation in the Biosciences (BIOMS) at the University of Heidelberg

Received  December 2018 Revised  January 2019 Published  July 2019

The aim of this paper is the derivation of general two-scale compactness results for coupled bulk-surface problems. Such results are needed for example for the homogenization of elliptic and parabolic equations with boundary conditions of second order in periodically perforated domains. We are dealing with Sobolev functions with more regular traces on the oscillating boundary, in the case when the norm of the traces and their surface gradients are of the same order. In this case, the two-scale convergence results for the traces and their gradients have a similar structure as for perforated domains, and we show the relation between the two-scale limits of the bulk-functions and their traces. Additionally, we apply our results to a reaction diffusion problem of elliptic type with a Wentzell-boundary condition in a multi-component domain.

Citation: Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151
References:
[1]

E. AcerbiV. ChiadòG. D. Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Analysis, theory, Methods & Applications, 18 (1992), 481-496.  doi: 10.1016/0362-546X(92)90015-7.  Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[3]

G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow Through Porous Media, A. Bourgeat et al., eds., World Scientific, Singapore, 15–25. Google Scholar

[4]

G. Allaire and H. Hutridurga, Homogenization of reactive flows in porous media and competition between bulk and surface diffusion, IMA Journal of Applied Mathematics, 77 (2012), 788-215.  doi: 10.1093/imamat/hxs049.  Google Scholar

[5]

M. Amar and R. Gianni, Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices, Discrete Cont. Dyn. Sys. B, 23 (2018), 1739-1756.  doi: 10.3934/dcdsb.2018078.  Google Scholar

[6]

A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math., 56 (2010), 1664-1693.  doi: 10.1137/S0036139995281822.  Google Scholar

[7]

J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math., 32B (2011), 823-846.  doi: 10.1007/s11401-011-0682-z.  Google Scholar

[8]

V. Bonnaillie-NoëlM. DambrineF. Héau and G. Vial, On generalized Ventcel's boundary conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal., 42 (2010), 931-945.  doi: 10.1137/090756521.  Google Scholar

[9]

J. R. Cannon and G. H. Meyer, On diffusion in a fractured medium, SIAM J. Appl. Math., 20 (1971), 434-448.  doi: 10.1137/0120047.  Google Scholar

[10]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3 Spectral Theory and Applications, Springer, 1990.  Google Scholar

[11]

H. Douanla, Two-scale convergence of periodic elliptic spectral problems with indefinite density function in perforated domains, Asymptotic Analysis, 81 (2013), 251-272.   Google Scholar

[12]

M. GahnM. Neuss-Radu and P. Knabner, Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity, Discrete & Continuous Dynamical Systems-Series S, 10 (2017), 773-797.  doi: 10.3934/dcdss.2017039.  Google Scholar

[13]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[14]

I. Graf and M. A. Peter, A convergence result for the periodic unfolding method related to fast diffusion on manifolds, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 485-490.  doi: 10.1016/j.crma.2014.03.002.  Google Scholar

[15]

H. Hutridurga, Homogenization of Complex Flow in Porous Media and Applications, PhD thesis, École Polytechnique, 2013. Google Scholar

[16]

M. Liero, Passing from bulk to bulk-surface evolution in the allen-cahn equation, Nonlinear Differential Equations and Applications NoDEA, 20 (2012), 919-942.  doi: 10.1007/s00030-012-0189-7.  Google Scholar

[17]

J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Praha & Masson, 1967.  Google Scholar

[18]

M. Neuss-Radu, Some extensions of two-scale convergence, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 899-904.   Google Scholar

[19]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[20]

J. Peetre, Another approach to elliptic boundary problems, Communications on Pure and Applied Mathematics, 14 (1961), 711-731.  doi: 10.1002/cpa.3160140404.  Google Scholar

[21]

M. Shinbrot, Water waves over periodic bottoms in three dimensions, J. Inst. Maths. Applics., 25 (1980), 367-385.  doi: 10.1093/imamat/25.4.367.  Google Scholar

[22]

J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization, Springer-Verlag, 1992. Google Scholar

[23]

R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, Journal of Functional Analysis, 52 (1983), 48-79.  doi: 10.1016/0022-1236(83)90090-3.  Google Scholar

[24]

H. Triebel, Theory of Function Spaces II, Birkhäuser, 1992. Google Scholar

[25]

A. D. Venttsel, On boundary conditions for multidimensional diffusion processes, Theor. Probability Appl., 4 (1959), 164-177.  doi: 10.1137/1104014.  Google Scholar

[26] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar

show all references

References:
[1]

E. AcerbiV. ChiadòG. D. Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Analysis, theory, Methods & Applications, 18 (1992), 481-496.  doi: 10.1016/0362-546X(92)90015-7.  Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[3]

G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow Through Porous Media, A. Bourgeat et al., eds., World Scientific, Singapore, 15–25. Google Scholar

[4]

G. Allaire and H. Hutridurga, Homogenization of reactive flows in porous media and competition between bulk and surface diffusion, IMA Journal of Applied Mathematics, 77 (2012), 788-215.  doi: 10.1093/imamat/hxs049.  Google Scholar

[5]

M. Amar and R. Gianni, Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices, Discrete Cont. Dyn. Sys. B, 23 (2018), 1739-1756.  doi: 10.3934/dcdsb.2018078.  Google Scholar

[6]

A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math., 56 (2010), 1664-1693.  doi: 10.1137/S0036139995281822.  Google Scholar

[7]

J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math., 32B (2011), 823-846.  doi: 10.1007/s11401-011-0682-z.  Google Scholar

[8]

V. Bonnaillie-NoëlM. DambrineF. Héau and G. Vial, On generalized Ventcel's boundary conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal., 42 (2010), 931-945.  doi: 10.1137/090756521.  Google Scholar

[9]

J. R. Cannon and G. H. Meyer, On diffusion in a fractured medium, SIAM J. Appl. Math., 20 (1971), 434-448.  doi: 10.1137/0120047.  Google Scholar

[10]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3 Spectral Theory and Applications, Springer, 1990.  Google Scholar

[11]

H. Douanla, Two-scale convergence of periodic elliptic spectral problems with indefinite density function in perforated domains, Asymptotic Analysis, 81 (2013), 251-272.   Google Scholar

[12]

M. GahnM. Neuss-Radu and P. Knabner, Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity, Discrete & Continuous Dynamical Systems-Series S, 10 (2017), 773-797.  doi: 10.3934/dcdss.2017039.  Google Scholar

[13]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.   Google Scholar

[14]

I. Graf and M. A. Peter, A convergence result for the periodic unfolding method related to fast diffusion on manifolds, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 485-490.  doi: 10.1016/j.crma.2014.03.002.  Google Scholar

[15]

H. Hutridurga, Homogenization of Complex Flow in Porous Media and Applications, PhD thesis, École Polytechnique, 2013. Google Scholar

[16]

M. Liero, Passing from bulk to bulk-surface evolution in the allen-cahn equation, Nonlinear Differential Equations and Applications NoDEA, 20 (2012), 919-942.  doi: 10.1007/s00030-012-0189-7.  Google Scholar

[17]

J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Praha & Masson, 1967.  Google Scholar

[18]

M. Neuss-Radu, Some extensions of two-scale convergence, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 899-904.   Google Scholar

[19]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[20]

J. Peetre, Another approach to elliptic boundary problems, Communications on Pure and Applied Mathematics, 14 (1961), 711-731.  doi: 10.1002/cpa.3160140404.  Google Scholar

[21]

M. Shinbrot, Water waves over periodic bottoms in three dimensions, J. Inst. Maths. Applics., 25 (1980), 367-385.  doi: 10.1093/imamat/25.4.367.  Google Scholar

[22]

J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization, Springer-Verlag, 1992. Google Scholar

[23]

R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, Journal of Functional Analysis, 52 (1983), 48-79.  doi: 10.1016/0022-1236(83)90090-3.  Google Scholar

[24]

H. Triebel, Theory of Function Spaces II, Birkhäuser, 1992. Google Scholar

[25]

A. D. Venttsel, On boundary conditions for multidimensional diffusion processes, Theor. Probability Appl., 4 (1959), 164-177.  doi: 10.1137/1104014.  Google Scholar

[26] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar
Figure 1.  Microscopic domain for $ \epsilon = \frac14 $ and $ \Omega = (0,1)^2 $, and $ Y_2 $ is strictly included in $ Y $
[1]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[2]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[7]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[10]

Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197

[11]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[12]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[13]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[14]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[15]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[18]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[19]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[20]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (99)
  • HTML views (234)
  • Cited by (1)

Other articles
by authors

[Back to Top]