[1]
|
A. Agren, A. Brahme and I. Turesson, Optimization of uncomplicated control for head and neck tumors, Int. J. Radiology Oncology Biol. Phys., 19 (1990), 1077-1085.
|
[2]
|
E. Allen, Modeling with Itô Stochastic Differential Equations, Mathematical Modelling: Theory and Applications, Springer, 2007.
|
[3]
|
S. Bao, Q. Wu, R. E. McLendon and Y. Hao, et al., Glioma stem cells promote radioresistance
by preferential activation of the DNA damage response, Nature, 444 (2006), 756-760.
doi: 10.1038/nature05236.
|
[4]
|
A. Barrett, J. Dobbs, S. Morris and T. Roques, Practical Radiotherapy Planning, Hodder Arnold, 2009, 4th edition.
|
[5]
|
E. Beretta, V. Capasso and N. Morozova, Mathematical modeling of cancer stem cells population behavior, Mat. Model. Nat. Phenom., 7 (2012), 279-305.
doi: 10.1051/mmnp/20127113.
|
[6]
|
J. Bernier, C. Domenge and M. Ozsahin, et al., Postoperative irradiation with or without
concomitant chemotherapy for locally advanced head and neck cancer, N. Engl. J. Med., 350
(2004), 1945-1952.
doi: 10.1056/NEJMoa032641.
|
[7]
|
M. U. Bogdanska, M. Bodnar, M. J. Piotrowska, M. Murek, P. Schucht, J. Beck, A. Martinez-Gonzalez and V. M. Perez-Garcia, A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications, PLoS ONE, 12 (2017), e0179999.
doi: 10.1371/journal.pone.0179999.
|
[8]
|
K. N. Chadwick and H. P. Leenhouts, The Molecular Theory of Radiation Biology, Springer, 1981.
|
[9]
|
D.-Y. Cho, S.-Z. Lin, W.-K. Yang, H.-C. Lee, D.-M. Hsu, H.-L. Lin, C.-C. Chen, C.-L. Liu, W.-Y. Lee and L.-H. Ho, Targeting cancer stem cells for treatment of glioblastoma multiforme, Cell Transplantation, 22 (2013), 731-739.
doi: 10.3727/096368912X655136.
|
[10]
|
J. Cresson and S. Sonner, A note on a derivation method for sde models: Applications in biology and viability criteria, Stoch. Anal. Appl., 36 (2018), 224-239.
doi: 10.1080/07362994.2017.1386571.
|
[11]
|
A. Dawson and T. Hillen, Derivation of the tumor control probability (tcp) from a cell cycle model, Computational and Mathematical Methods in Medicine, 7 (2006), 121-141.
doi: 10.1080/10273660600968937.
|
[12]
|
J. E. Dick, Stem cell concepts renew cancer research, Blood, 112 (2008), 4793-4807.
doi: 10.1182/blood-2008-08-077941.
|
[13]
|
D. Dingli and F. Michor, Successful therapy must eradicate cancer stem cells, Stem Cells, 24 (2006), 2603-2610.
doi: 10.1634/stemcells.2006-0136.
|
[14]
|
J. Douglas, Alternating direction methods for three space variables, Numer. Math., 4 (1962), 41-63.
doi: 10.1007/BF01386295.
|
[15]
|
T. Eckschlager, J. Plch, M. Stiborova and J. Hrabeta, Histone deacetylase inhibitors as anticancer drugs, Int. J. Molec. Sci., 18 (2017), 1414.
doi: 10.3390/ijms18071414.
|
[16]
|
H. Enderling, L. Hlatky and P. Hahnfeldt, Migration rules: Tumours are conglomerates of self-metastases, Br. J. Cancer, 100 (2009), 1917-1925.
doi: 10.1038/sj.bjc.6605071.
|
[17]
|
H. Enderling, L. Hlatky and P. Hahnfeldt, Cancer stem cells: A minor cancer subpopulation that redefines global cancer features, Front. Oncol., 3 (2013), 76.1-76.10.
|
[18]
|
H. Fakir, L. Hlatky, H. Li and R. Sachs, Repopulation of interacting tumor cells during fractionated radiotherapy: Stochastic modeling of the tumor control probability, Medical Physics, 40 (2013), 121716.
doi: 10.1118/1.4829495.
|
[19]
|
A. A. Forastiere, H Goepfert and M. Maor, et al., Concurrent chemotherapy and radiotherapy
for organ preservation in advanced laryngeal cancer, N. Engl. J. Med., 349 (2003), 2091-2098.
doi: 10.1056/NEJMoa031317.
|
[20]
|
R. Ganguli and I. K. Puri, Mathematical model for the cancer stem cell hypothesis, Cell Proliferation, 39 (2006), 3-14.
doi: 10.1111/j.1365-2184.2006.00369.x.
|
[21]
|
J. Gong, Tumor Control Probability Models, PhD thesis, University of Alberta, Canada, 2011.
|
[22]
|
J. Gong, M. M. dos Santos, C. Finlay and T. Hillen, Are more complicated tumour control probability models better?, Math. Med. Biol., 30 (2013), 1-19.
doi: 10.1093/imammb/dqr023.
|
[23]
|
P. B. Gupta, C. M. Fillmore, G. Jiang, S. D. Shapira, K. Tao, C. Kuperwasser and E. S. Lander, Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells, Cell, 146 (2011), 633-644.
|
[24]
|
D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57-70.
doi: 10.1016/S0092-8674(00)81683-9.
|
[25]
|
T. Hillen and J. W. N. Bachmann, Mathematical optimization of the combination of radiation and differentiation therapies for cancer, Frontiers in Oncology, 3 (2013).
|
[26]
|
T. Hillen, H. Enderling and P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells, Bulletin of Mathematical Biology, 75 (2013), 161-184.
doi: 10.1007/s11538-012-9798-x.
|
[27]
|
S. Hiremath, S. Sonner, C. Surulescu and A. Zhigun, On a coupled SDE-PDE system modeling acid-mediated tumor invasion, Discr. Cont. Dyn. Syst. B, 23 (2018), 2339-2369.
doi: 10.3934/dcdsb.2018071.
|
[28]
|
S. Hiremath and C. Surulescu, A stochastic multiscale model for acid mediated cancer invasion, Nonlinear Analysis: Real World Applications, 22 (2015), 176-205.
doi: 10.1016/j.nonrwa.2014.08.008.
|
[29]
|
S. Hiremath and C. Surulescu, A stochastic model featuring acid-induced gaps during tumor progression, Nonlinearity, 29 (2016), 851-914.
doi: 10.1088/0951-7715/29/3/851.
|
[30]
|
Y. Iwasa, M. A. Nowak and F. Michor, Evolution of resistance during clonal expansion, Genetics, 172 (2006), 2557-2566.
doi: 10.1534/genetics.105.049791.
|
[31]
|
A. Jackson, G. J. Kutscher and E. D. Yorke, Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation, Medical Physiscs, 20 (1993), 613-625.
doi: 10.1118/1.597056.
|
[32]
|
M. Jackson, F. Hassiotou and A. Nowak, Glioblastoma stem-like cells: At the root of tumor recurrence and a therapeutic target, Carcinogenesis, 36 (2015), 177-185.
doi: 10.1093/carcin/bgu243.
|
[33]
|
P. Källman, B. K. Lind and A. Brahme, An algorithm for maximizing the probability of complication-free tumour control in radiation therapy, Phys. Med. Biol., 37 (1992), 871-890.
|
[34]
|
I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991.
doi: 10.1007/978-1-4612-0949-2.
|
[35]
|
W. K. Kelly, O. A. O'Connor, L. M. Krug, J. H. Chiao, M. Heaney, T. Curley, B. MacGregore-Cortelli, W. Tong, J. P. Secrist, L. Schwartz, S. Richardson, E. Chu, S. Olgac, P. A. Marks, H. Scher and V. M. Richon, Phase 1 study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer, Journal of Clinical Oncology, 23 (2005), 3923-3931.
doi: 10.1200/JCO.2005.14.167.
|
[36]
|
Y. Kim, K. M. Joo, J. Jin and D. H. Nam, Cancer stem cells and their mechanism of chemo-radiation resistance, Int. J. Stem Cells, 2 (2009), 109-114.
doi: 10.15283/ijsc.2009.2.2.109.
|
[37]
|
P. Kloeden, S. Sonner and C. Surulescu, A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor, Discr. Cont. Dyn. Syst. B, 21 (2016), 2233-2254.
doi: 10.3934/dcdsb.2016045.
|
[38]
|
N. Komarova and D. Wodarz, Effect of cellular quiescence on the success of targeted CML therapy, PLoS ONE, 2 (2007), e990.1-e990.9.
|
[39]
|
J. Kroos, An SDE approach to cancer therapy including stem cells, Master thesis, University of Münster, 2014.
|
[40]
|
G. J. Kutscher and C. Burman, Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method, Int. J. Rad. Oncol. Biol. Phys., 16 (1989), 1623-1630.
|
[41]
|
K. Leder, E. C. Holland and F. Michor, The therapeutic implications of plasticity of the cancer stem cell phenotype, PLoS ONE, 5 (2010), e14366.
doi: 10.1371/journal.pone.0014366.
|
[42]
|
J. T. Lymann, Complication probability as assessed from dose-volume histograms, Radiation Research, 104 (1985), 13-19.
|
[43]
|
C. Maenhaut, J. E. Dumont, P. P. Roger and W. C. G. van Staveren, Cancer stem cells: A reality, a myth, a fuzzy concept or a misnomer? an analysis, Carcinogenesis, 31 (2010), 149-158.
doi: 10.1093/carcin/bgp259.
|
[44]
|
S. Matsuda, T. Yan, A. Mizutani, T. Sota and Y. Hiramoto, et al., Cancer stem cells maintain
a hierarchy of differentiation by creating their niche, Int. J. Cancer, 135 (2014), 27-36.
doi: 10.1002/ijc.28648.
|
[45]
|
P. Munoz, M. S. Iliou and M. Esteller, Epigenetic alterations involved in cancer stem cell reprogramming, Molecular Oncology, 6 (2012), 620-636.
|
[46]
|
N. Navin, J. Kendall, J. Troge and P. Andrews, et al., Tumour evolution inferred by single-cell sequencing, Nature, 472 (2011), 90-94.
doi: 10.1038/nature09807.
|
[47]
|
A. Niemierko and M. Goitein., Modeling of normal tissue response to radiation: The critical volume model, Int. J. Rad. Onc. Biol. Phys., 25 (1993), 135-145.
doi: 10.1016/0360-3016(93)90156-P.
|
[48]
|
A. Oroji, M. Omer and S. Yarahmadian, An Itô stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy, J. Theor. Biol., 407 (2016), 128-137.
doi: 10.1016/j.jtbi.2016.07.035.
|
[49]
|
F. Pajonk, E. Vlashi and W. H. McBride, Radiation resistance of cancer stem cells: The 4 R's of radiobiology revisited, Stem Cells, 28 (2010), 639-648.
doi: 10.1002/stem.318.
|
[50]
|
G. A. Pavliotis., Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Springer, 2014.
doi: 10.1007/978-1-4939-1323-7.
|
[51]
|
P. R. Pazdziorek, Mathematical model of stem cell differentiation and tissue regeneration with stochastic noise, Bull. Math. Biol., 76 (2014), 1642-1669.
doi: 10.1007/s11538-014-9971-5.
|
[52]
|
G. Powathil, M. Kohandel, S. Sivaloganathan, A. Oza and M. Milosevic, Mathematical model of brain tumors: Effects of radiotherapy and chemotherapy, Physics in Medicine and Biology, 52 (2007), 3291-3306.
|
[53]
|
X. S. Qi, C. J. Schultz and X. A. Li, An estimation of radiobiologic parameters from clinical outcomes for radiation treatment planning of brain tumor, Int. J. Radiat. Oncol. Biol. Phys., 64 (2006), 1570-1580.
doi: 10.1016/j.ijrobp.2005.12.022.
|
[54]
|
P. Rajan and R. Srinivasan, Targeting cancer stem cells in cancer prevention and therapy, Stem Cell Rev., 4 (2008), 211-216.
doi: 10.1007/s12015-008-9037-x.
|
[55]
|
G. Rosenkranz, Growth models with stochastic differential equations. An example from tumor immunology, Math. Biosci., 75 (1985), 175-186.
doi: 10.1016/0025-5564(85)90036-7.
|
[56]
|
L. Salvatori, F. Caporuscio, A. Verdina, G. Starace and S. Crispi, et al., Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors, PLoS ONE, 7 (2012), e31467.
doi: 10.1371/journal.pone.0031467.
|
[57]
|
M. Sehl, H. Zhou, J. S. Sinsheimer and K. L. Lange, Extinction models for cancer stem cell therapy, Math. Biosci., 234 (2011), 132-146.
doi: 10.1016/j.mbs.2011.09.005.
|
[58]
|
S. Selvin, Survival Analysis for Epidemiologic and Medical Research. A Practical Guide, Cambridge Univ. Press, 2008.
doi: 10.1017/CBO9780511619809.
|
[59]
|
Y. Shiozawa, B. Nie, K. J. Pienta, T. M. Morgan and R. S. Taichman, Cancer stem cells and their role in metastasis, Pharmacology & Therapeutics, 138 (2013), 285-293.
doi: 10.1016/j.pharmthera.2013.01.014.
|
[60]
|
A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publ. Company, 1965.
|
[61]
|
A. L. Stensjøen, O. Solheim, K. A. Kvistad, A. K. Håberg, Ø. Salvesen and E. M. Berntsen, Growth dynamics of untreated glioblastomas in vivo, Neuro Oncol., 17 (2015), 1402-1411.
|
[62]
|
T. Stiehl and A. Marciniak-Czochra, Mathematical modeling of leukemogenesis and cancer stem cell dynamics, Mat. Model. Nat. Phenom., 7 (2012), 166-202.
doi: 10.1051/mmnp/20127199.
|
[63]
|
T. Stocks, T. Hillen, J. Gong and M. Burger, A stochastic model for the normal tissue complication probability (NTCP) and applications, Math. Med. Biol., 34 (2017), 469-492.
doi: 10.1093/imammb/dqw013.
|
[64]
|
C. Surulescu and N. Surulescu., Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems, In P. Kloeden and C. Pötzsche, editors, Nonautonomous Dynamical Systems in the Life Sciences, LNM 2102, Springer, 2102 (2013), 269-307.
doi: 10.1007/978-3-319-03080-7_9.
|
[65]
|
B. T. Tan, C. Y. Park, L. E. Ailles and I. L. Weissman, The cancer stem cell hypothesis: A work in progress, Lab. Invest., 86 (2006), 1203-1207.
doi: 10.1038/labinvest.3700488.
|
[66]
|
C. M. van Leeuwen, A. L. Oei, J. Crezee, A. Bel, N. A. P. Franken, L. J. A. Stalpers and H. P. Kok, The alfa and beta of tumours: A review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies, Radiation Oncology, 13 (2018), 96.
doi: 10.1186/s13014-018-1040-z.
|
[67]
|
H. Youssefpour, X. Li, A. D. Lander and J. S. Lowengrub, Multispecies model of cell lineages and feedback control in solid tumors, Journal of Theoretical Biology, 304 (2012), 39-59.
doi: 10.1016/j.jtbi.2012.02.030.
|
[68]
|
M. Zaider and G. N. Minerbo, Tumor control probability: A formulation applicable to any temporal protocol of dose delivery, Phys. Math. Biol., 45 (2000), 279-293.
|