August  2019, 24(8): 4629-4663. doi: 10.3934/dcdsb.2019157

SDE-driven modeling of phenotypically heterogeneous tumors: The influence of cancer cell stemness

1. 

Basque Center for Applied Mathematics, Alameda Mazarredo 14, 48009 Bilbao, Spain

2. 

Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany

3. 

Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663 Kaiserslautern, Germany

4. 

German Breast Group Forschungs GmbH, 63263 Neu-Isenburg, Germany

* Corresponding author: Christina Surulescu

Received  October 2018 Revised  May 2019 Published  June 2019

Fund Project: This work is dedicated to Peter Kloeden on the occasion of his 70th birthday.

We deduce cell population models describing the evolution of a tumor (possibly interacting with its environment of healthy cells) with the aid of differential equations. Thereby, different subpopulations of cancer cells allow accounting for the tumor heterogeneity. In our settings these include cancer stem cells known to be less sensitive to treatment and differentiated cancer cells having a higher sensitivity towards chemo- and radiotherapy. Our approach relies on stochastic differential equations in order to account for randomness in the system, arising e.g., due to the therapy-induced decreasing number of clonogens, which renders a pure deterministic model arguable. The equations are deduced relying on transition probabilities characterizing innovations of the two cancer cell subpopulations, and similarly extended to also account for the evolution of normal tissue. Several therapy approaches are introduced and compared by way of tumor control probability (TCP) and uncomplicated tumor control probability (UTCP). A PDE approach allows to assess the evolution of tumor and normal tissue with respect to time and to cell population densities which can vary continuously in a given set of states. Analytical approximations of solutions to the obtained PDE system are provided as well.

Citation: Julia M. Kroos, Christian Stinner, Christina Surulescu, Nico Surulescu. SDE-driven modeling of phenotypically heterogeneous tumors: The influence of cancer cell stemness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4629-4663. doi: 10.3934/dcdsb.2019157
References:
[1]

A. AgrenA. Brahme and I. Turesson, Optimization of uncomplicated control for head and neck tumors, Int. J. Radiology Oncology Biol. Phys., 19 (1990), 1077-1085.   Google Scholar

[2]

E. Allen, Modeling with Itô Stochastic Differential Equations, Mathematical Modelling: Theory and Applications, Springer, 2007.  Google Scholar

[3]

S. Bao, Q. Wu, R. E. McLendon and Y. Hao, et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 444 (2006), 756-760. doi: 10.1038/nature05236.  Google Scholar

[4]

A. Barrett, J. Dobbs, S. Morris and T. Roques, Practical Radiotherapy Planning, Hodder Arnold, 2009, 4th edition. Google Scholar

[5]

E. BerettaV. Capasso and N. Morozova, Mathematical modeling of cancer stem cells population behavior, Mat. Model. Nat. Phenom., 7 (2012), 279-305.  doi: 10.1051/mmnp/20127113.  Google Scholar

[6]

J. Bernier, C. Domenge and M. Ozsahin, et al., Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer, N. Engl. J. Med., 350 (2004), 1945-1952. doi: 10.1056/NEJMoa032641.  Google Scholar

[7]

M. U. BogdanskaM. BodnarM. J. PiotrowskaM. MurekP. SchuchtJ. BeckA. Martinez-Gonzalez and V. M. Perez-Garcia, A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications, PLoS ONE, 12 (2017), e0179999.  doi: 10.1371/journal.pone.0179999.  Google Scholar

[8]

K. N. Chadwick and H. P. Leenhouts, The Molecular Theory of Radiation Biology, Springer, 1981. Google Scholar

[9]

D.-Y. ChoS.-Z. LinW.-K. YangH.-C. LeeD.-M. HsuH.-L. LinC.-C. ChenC.-L. LiuW.-Y. Lee and L.-H. Ho, Targeting cancer stem cells for treatment of glioblastoma multiforme, Cell Transplantation, 22 (2013), 731-739.  doi: 10.3727/096368912X655136.  Google Scholar

[10]

J. Cresson and S. Sonner, A note on a derivation method for sde models: Applications in biology and viability criteria, Stoch. Anal. Appl., 36 (2018), 224-239.  doi: 10.1080/07362994.2017.1386571.  Google Scholar

[11]

A. Dawson and T. Hillen, Derivation of the tumor control probability (tcp) from a cell cycle model, Computational and Mathematical Methods in Medicine, 7 (2006), 121-141.  doi: 10.1080/10273660600968937.  Google Scholar

[12]

J. E. Dick, Stem cell concepts renew cancer research, Blood, 112 (2008), 4793-4807.  doi: 10.1182/blood-2008-08-077941.  Google Scholar

[13]

D. Dingli and F. Michor, Successful therapy must eradicate cancer stem cells, Stem Cells, 24 (2006), 2603-2610.  doi: 10.1634/stemcells.2006-0136.  Google Scholar

[14]

J. Douglas, Alternating direction methods for three space variables, Numer. Math., 4 (1962), 41-63.  doi: 10.1007/BF01386295.  Google Scholar

[15]

T. EckschlagerJ. PlchM. Stiborova and J. Hrabeta, Histone deacetylase inhibitors as anticancer drugs, Int. J. Molec. Sci., 18 (2017), 1414.  doi: 10.3390/ijms18071414.  Google Scholar

[16]

H. EnderlingL. Hlatky and P. Hahnfeldt, Migration rules: Tumours are conglomerates of self-metastases, Br. J. Cancer, 100 (2009), 1917-1925.  doi: 10.1038/sj.bjc.6605071.  Google Scholar

[17]

H. EnderlingL. Hlatky and P. Hahnfeldt, Cancer stem cells: A minor cancer subpopulation that redefines global cancer features, Front. Oncol., 3 (2013), 76.1-76.10.   Google Scholar

[18]

H. FakirL. HlatkyH. Li and R. Sachs, Repopulation of interacting tumor cells during fractionated radiotherapy: Stochastic modeling of the tumor control probability, Medical Physics, 40 (2013), 121716.  doi: 10.1118/1.4829495.  Google Scholar

[19]

A. A. Forastiere, H Goepfert and M. Maor, et al., Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer, N. Engl. J. Med., 349 (2003), 2091-2098. doi: 10.1056/NEJMoa031317.  Google Scholar

[20]

R. Ganguli and I. K. Puri, Mathematical model for the cancer stem cell hypothesis, Cell Proliferation, 39 (2006), 3-14.  doi: 10.1111/j.1365-2184.2006.00369.x.  Google Scholar

[21]

J. Gong, Tumor Control Probability Models, PhD thesis, University of Alberta, Canada, 2011.  Google Scholar

[22]

J. GongM. M. dos SantosC. Finlay and T. Hillen, Are more complicated tumour control probability models better?, Math. Med. Biol., 30 (2013), 1-19.  doi: 10.1093/imammb/dqr023.  Google Scholar

[23]

P. B. GuptaC. M. FillmoreG. JiangS. D. ShapiraK. TaoC. Kuperwasser and E. S. Lander, Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells, Cell, 146 (2011), 633-644.   Google Scholar

[24]

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57-70.  doi: 10.1016/S0092-8674(00)81683-9.  Google Scholar

[25]

T. Hillen and J. W. N. Bachmann, Mathematical optimization of the combination of radiation and differentiation therapies for cancer, Frontiers in Oncology, 3 (2013).   Google Scholar

[26]

T. HillenH. Enderling and P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells, Bulletin of Mathematical Biology, 75 (2013), 161-184.  doi: 10.1007/s11538-012-9798-x.  Google Scholar

[27]

S. HiremathS. SonnerC. Surulescu and A. Zhigun, On a coupled SDE-PDE system modeling acid-mediated tumor invasion, Discr. Cont. Dyn. Syst. B, 23 (2018), 2339-2369.  doi: 10.3934/dcdsb.2018071.  Google Scholar

[28]

S. Hiremath and C. Surulescu, A stochastic multiscale model for acid mediated cancer invasion, Nonlinear Analysis: Real World Applications, 22 (2015), 176-205.  doi: 10.1016/j.nonrwa.2014.08.008.  Google Scholar

[29]

S. Hiremath and C. Surulescu, A stochastic model featuring acid-induced gaps during tumor progression, Nonlinearity, 29 (2016), 851-914.  doi: 10.1088/0951-7715/29/3/851.  Google Scholar

[30]

Y. IwasaM. A. Nowak and F. Michor, Evolution of resistance during clonal expansion, Genetics, 172 (2006), 2557-2566.  doi: 10.1534/genetics.105.049791.  Google Scholar

[31]

A. JacksonG. J. Kutscher and E. D. Yorke, Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation, Medical Physiscs, 20 (1993), 613-625.  doi: 10.1118/1.597056.  Google Scholar

[32]

M. JacksonF. Hassiotou and A. Nowak, Glioblastoma stem-like cells: At the root of tumor recurrence and a therapeutic target, Carcinogenesis, 36 (2015), 177-185.  doi: 10.1093/carcin/bgu243.  Google Scholar

[33]

P. KällmanB. K. Lind and A. Brahme, An algorithm for maximizing the probability of complication-free tumour control in radiation therapy, Phys. Med. Biol., 37 (1992), 871-890.   Google Scholar

[34]

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[35]

W. K. KellyO. A. O'ConnorL. M. KrugJ. H. ChiaoM. HeaneyT. CurleyB. MacGregore-CortelliW. TongJ. P. SecristL. SchwartzS. RichardsonE. ChuS. OlgacP. A. MarksH. Scher and V. M. Richon, Phase 1 study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer, Journal of Clinical Oncology, 23 (2005), 3923-3931.  doi: 10.1200/JCO.2005.14.167.  Google Scholar

[36]

Y. KimK. M. JooJ. Jin and D. H. Nam, Cancer stem cells and their mechanism of chemo-radiation resistance, Int. J. Stem Cells, 2 (2009), 109-114.  doi: 10.15283/ijsc.2009.2.2.109.  Google Scholar

[37]

P. KloedenS. Sonner and C. Surulescu, A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor, Discr. Cont. Dyn. Syst. B, 21 (2016), 2233-2254.  doi: 10.3934/dcdsb.2016045.  Google Scholar

[38]

N. Komarova and D. Wodarz, Effect of cellular quiescence on the success of targeted CML therapy, PLoS ONE, 2 (2007), e990.1-e990.9.   Google Scholar

[39]

J. Kroos, An SDE approach to cancer therapy including stem cells, Master thesis, University of Münster, 2014. Google Scholar

[40]

G. J. Kutscher and C. Burman, Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method, Int. J. Rad. Oncol. Biol. Phys., 16 (1989), 1623-1630.   Google Scholar

[41]

K. LederE. C. Holland and F. Michor, The therapeutic implications of plasticity of the cancer stem cell phenotype, PLoS ONE, 5 (2010), e14366.  doi: 10.1371/journal.pone.0014366.  Google Scholar

[42]

J. T. Lymann, Complication probability as assessed from dose-volume histograms, Radiation Research, 104 (1985), 13-19.   Google Scholar

[43]

C. MaenhautJ. E. DumontP. P. Roger and W. C. G. van Staveren, Cancer stem cells: A reality, a myth, a fuzzy concept or a misnomer? an analysis, Carcinogenesis, 31 (2010), 149-158.  doi: 10.1093/carcin/bgp259.  Google Scholar

[44]

S. Matsuda, T. Yan, A. Mizutani, T. Sota and Y. Hiramoto, et al., Cancer stem cells maintain a hierarchy of differentiation by creating their niche, Int. J. Cancer, 135 (2014), 27-36. doi: 10.1002/ijc.28648.  Google Scholar

[45]

P. MunozM. S. Iliou and M. Esteller, Epigenetic alterations involved in cancer stem cell reprogramming, Molecular Oncology, 6 (2012), 620-636.   Google Scholar

[46]

N. Navin, J. Kendall, J. Troge and P. Andrews, et al., Tumour evolution inferred by single-cell sequencing, Nature, 472 (2011), 90-94. doi: 10.1038/nature09807.  Google Scholar

[47]

A. Niemierko and M. Goitein., Modeling of normal tissue response to radiation: The critical volume model, Int. J. Rad. Onc. Biol. Phys., 25 (1993), 135-145.  doi: 10.1016/0360-3016(93)90156-P.  Google Scholar

[48]

A. OrojiM. Omer and S. Yarahmadian, An Itô stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy, J. Theor. Biol., 407 (2016), 128-137.  doi: 10.1016/j.jtbi.2016.07.035.  Google Scholar

[49]

F. PajonkE. Vlashi and W. H. McBride, Radiation resistance of cancer stem cells: The 4 R's of radiobiology revisited, Stem Cells, 28 (2010), 639-648.  doi: 10.1002/stem.318.  Google Scholar

[50]

G. A. Pavliotis., Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Springer, 2014. doi: 10.1007/978-1-4939-1323-7.  Google Scholar

[51]

P. R. Pazdziorek, Mathematical model of stem cell differentiation and tissue regeneration with stochastic noise, Bull. Math. Biol., 76 (2014), 1642-1669.  doi: 10.1007/s11538-014-9971-5.  Google Scholar

[52]

G. PowathilM. KohandelS. SivaloganathanA. Oza and M. Milosevic, Mathematical model of brain tumors: Effects of radiotherapy and chemotherapy, Physics in Medicine and Biology, 52 (2007), 3291-3306.   Google Scholar

[53]

X. S. QiC. J. Schultz and X. A. Li, An estimation of radiobiologic parameters from clinical outcomes for radiation treatment planning of brain tumor, Int. J. Radiat. Oncol. Biol. Phys., 64 (2006), 1570-1580.  doi: 10.1016/j.ijrobp.2005.12.022.  Google Scholar

[54]

P. Rajan and R. Srinivasan, Targeting cancer stem cells in cancer prevention and therapy, Stem Cell Rev., 4 (2008), 211-216.  doi: 10.1007/s12015-008-9037-x.  Google Scholar

[55]

G. Rosenkranz, Growth models with stochastic differential equations. An example from tumor immunology, Math. Biosci., 75 (1985), 175-186.  doi: 10.1016/0025-5564(85)90036-7.  Google Scholar

[56]

L. Salvatori, F. Caporuscio, A. Verdina, G. Starace and S. Crispi, et al., Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors, PLoS ONE, 7 (2012), e31467. doi: 10.1371/journal.pone.0031467.  Google Scholar

[57]

M. SehlH. ZhouJ. S. Sinsheimer and K. L. Lange, Extinction models for cancer stem cell therapy, Math. Biosci., 234 (2011), 132-146.  doi: 10.1016/j.mbs.2011.09.005.  Google Scholar

[58] S. Selvin, Survival Analysis for Epidemiologic and Medical Research. A Practical Guide, Cambridge Univ. Press, 2008.  doi: 10.1017/CBO9780511619809.  Google Scholar
[59]

Y. ShiozawaB. NieK. J. PientaT. M. Morgan and R. S. Taichman, Cancer stem cells and their role in metastasis, Pharmacology & Therapeutics, 138 (2013), 285-293.  doi: 10.1016/j.pharmthera.2013.01.014.  Google Scholar

[60]

A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publ. Company, 1965.  Google Scholar

[61]

A. L. StensjøenO. SolheimK. A. KvistadA. K. HåbergØ. Salvesen and E. M. Berntsen, Growth dynamics of untreated glioblastomas in vivo, Neuro Oncol., 17 (2015), 1402-1411.   Google Scholar

[62]

T. Stiehl and A. Marciniak-Czochra, Mathematical modeling of leukemogenesis and cancer stem cell dynamics, Mat. Model. Nat. Phenom., 7 (2012), 166-202.  doi: 10.1051/mmnp/20127199.  Google Scholar

[63]

T. StocksT. HillenJ. Gong and M. Burger, A stochastic model for the normal tissue complication probability (NTCP) and applications, Math. Med. Biol., 34 (2017), 469-492.  doi: 10.1093/imammb/dqw013.  Google Scholar

[64]

C. Surulescu and N. Surulescu., Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems, In P. Kloeden and C. Pötzsche, editors, Nonautonomous Dynamical Systems in the Life Sciences, LNM 2102, Springer, 2102 (2013), 269-307. doi: 10.1007/978-3-319-03080-7_9.  Google Scholar

[65]

B. T. TanC. Y. ParkL. E. Ailles and I. L. Weissman, The cancer stem cell hypothesis: A work in progress, Lab. Invest., 86 (2006), 1203-1207.  doi: 10.1038/labinvest.3700488.  Google Scholar

[66]

C. M. van LeeuwenA. L. OeiJ. CrezeeA. BelN. A. P. FrankenL. J. A. Stalpers and H. P. Kok, The alfa and beta of tumours: A review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies, Radiation Oncology, 13 (2018), 96.  doi: 10.1186/s13014-018-1040-z.  Google Scholar

[67]

H. YoussefpourX. LiA. D. Lander and J. S. Lowengrub, Multispecies model of cell lineages and feedback control in solid tumors, Journal of Theoretical Biology, 304 (2012), 39-59.  doi: 10.1016/j.jtbi.2012.02.030.  Google Scholar

[68]

M. Zaider and G. N. Minerbo, Tumor control probability: A formulation applicable to any temporal protocol of dose delivery, Phys. Math. Biol., 45 (2000), 279-293.   Google Scholar

show all references

References:
[1]

A. AgrenA. Brahme and I. Turesson, Optimization of uncomplicated control for head and neck tumors, Int. J. Radiology Oncology Biol. Phys., 19 (1990), 1077-1085.   Google Scholar

[2]

E. Allen, Modeling with Itô Stochastic Differential Equations, Mathematical Modelling: Theory and Applications, Springer, 2007.  Google Scholar

[3]

S. Bao, Q. Wu, R. E. McLendon and Y. Hao, et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 444 (2006), 756-760. doi: 10.1038/nature05236.  Google Scholar

[4]

A. Barrett, J. Dobbs, S. Morris and T. Roques, Practical Radiotherapy Planning, Hodder Arnold, 2009, 4th edition. Google Scholar

[5]

E. BerettaV. Capasso and N. Morozova, Mathematical modeling of cancer stem cells population behavior, Mat. Model. Nat. Phenom., 7 (2012), 279-305.  doi: 10.1051/mmnp/20127113.  Google Scholar

[6]

J. Bernier, C. Domenge and M. Ozsahin, et al., Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer, N. Engl. J. Med., 350 (2004), 1945-1952. doi: 10.1056/NEJMoa032641.  Google Scholar

[7]

M. U. BogdanskaM. BodnarM. J. PiotrowskaM. MurekP. SchuchtJ. BeckA. Martinez-Gonzalez and V. M. Perez-Garcia, A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications, PLoS ONE, 12 (2017), e0179999.  doi: 10.1371/journal.pone.0179999.  Google Scholar

[8]

K. N. Chadwick and H. P. Leenhouts, The Molecular Theory of Radiation Biology, Springer, 1981. Google Scholar

[9]

D.-Y. ChoS.-Z. LinW.-K. YangH.-C. LeeD.-M. HsuH.-L. LinC.-C. ChenC.-L. LiuW.-Y. Lee and L.-H. Ho, Targeting cancer stem cells for treatment of glioblastoma multiforme, Cell Transplantation, 22 (2013), 731-739.  doi: 10.3727/096368912X655136.  Google Scholar

[10]

J. Cresson and S. Sonner, A note on a derivation method for sde models: Applications in biology and viability criteria, Stoch. Anal. Appl., 36 (2018), 224-239.  doi: 10.1080/07362994.2017.1386571.  Google Scholar

[11]

A. Dawson and T. Hillen, Derivation of the tumor control probability (tcp) from a cell cycle model, Computational and Mathematical Methods in Medicine, 7 (2006), 121-141.  doi: 10.1080/10273660600968937.  Google Scholar

[12]

J. E. Dick, Stem cell concepts renew cancer research, Blood, 112 (2008), 4793-4807.  doi: 10.1182/blood-2008-08-077941.  Google Scholar

[13]

D. Dingli and F. Michor, Successful therapy must eradicate cancer stem cells, Stem Cells, 24 (2006), 2603-2610.  doi: 10.1634/stemcells.2006-0136.  Google Scholar

[14]

J. Douglas, Alternating direction methods for three space variables, Numer. Math., 4 (1962), 41-63.  doi: 10.1007/BF01386295.  Google Scholar

[15]

T. EckschlagerJ. PlchM. Stiborova and J. Hrabeta, Histone deacetylase inhibitors as anticancer drugs, Int. J. Molec. Sci., 18 (2017), 1414.  doi: 10.3390/ijms18071414.  Google Scholar

[16]

H. EnderlingL. Hlatky and P. Hahnfeldt, Migration rules: Tumours are conglomerates of self-metastases, Br. J. Cancer, 100 (2009), 1917-1925.  doi: 10.1038/sj.bjc.6605071.  Google Scholar

[17]

H. EnderlingL. Hlatky and P. Hahnfeldt, Cancer stem cells: A minor cancer subpopulation that redefines global cancer features, Front. Oncol., 3 (2013), 76.1-76.10.   Google Scholar

[18]

H. FakirL. HlatkyH. Li and R. Sachs, Repopulation of interacting tumor cells during fractionated radiotherapy: Stochastic modeling of the tumor control probability, Medical Physics, 40 (2013), 121716.  doi: 10.1118/1.4829495.  Google Scholar

[19]

A. A. Forastiere, H Goepfert and M. Maor, et al., Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer, N. Engl. J. Med., 349 (2003), 2091-2098. doi: 10.1056/NEJMoa031317.  Google Scholar

[20]

R. Ganguli and I. K. Puri, Mathematical model for the cancer stem cell hypothesis, Cell Proliferation, 39 (2006), 3-14.  doi: 10.1111/j.1365-2184.2006.00369.x.  Google Scholar

[21]

J. Gong, Tumor Control Probability Models, PhD thesis, University of Alberta, Canada, 2011.  Google Scholar

[22]

J. GongM. M. dos SantosC. Finlay and T. Hillen, Are more complicated tumour control probability models better?, Math. Med. Biol., 30 (2013), 1-19.  doi: 10.1093/imammb/dqr023.  Google Scholar

[23]

P. B. GuptaC. M. FillmoreG. JiangS. D. ShapiraK. TaoC. Kuperwasser and E. S. Lander, Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells, Cell, 146 (2011), 633-644.   Google Scholar

[24]

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57-70.  doi: 10.1016/S0092-8674(00)81683-9.  Google Scholar

[25]

T. Hillen and J. W. N. Bachmann, Mathematical optimization of the combination of radiation and differentiation therapies for cancer, Frontiers in Oncology, 3 (2013).   Google Scholar

[26]

T. HillenH. Enderling and P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells, Bulletin of Mathematical Biology, 75 (2013), 161-184.  doi: 10.1007/s11538-012-9798-x.  Google Scholar

[27]

S. HiremathS. SonnerC. Surulescu and A. Zhigun, On a coupled SDE-PDE system modeling acid-mediated tumor invasion, Discr. Cont. Dyn. Syst. B, 23 (2018), 2339-2369.  doi: 10.3934/dcdsb.2018071.  Google Scholar

[28]

S. Hiremath and C. Surulescu, A stochastic multiscale model for acid mediated cancer invasion, Nonlinear Analysis: Real World Applications, 22 (2015), 176-205.  doi: 10.1016/j.nonrwa.2014.08.008.  Google Scholar

[29]

S. Hiremath and C. Surulescu, A stochastic model featuring acid-induced gaps during tumor progression, Nonlinearity, 29 (2016), 851-914.  doi: 10.1088/0951-7715/29/3/851.  Google Scholar

[30]

Y. IwasaM. A. Nowak and F. Michor, Evolution of resistance during clonal expansion, Genetics, 172 (2006), 2557-2566.  doi: 10.1534/genetics.105.049791.  Google Scholar

[31]

A. JacksonG. J. Kutscher and E. D. Yorke, Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation, Medical Physiscs, 20 (1993), 613-625.  doi: 10.1118/1.597056.  Google Scholar

[32]

M. JacksonF. Hassiotou and A. Nowak, Glioblastoma stem-like cells: At the root of tumor recurrence and a therapeutic target, Carcinogenesis, 36 (2015), 177-185.  doi: 10.1093/carcin/bgu243.  Google Scholar

[33]

P. KällmanB. K. Lind and A. Brahme, An algorithm for maximizing the probability of complication-free tumour control in radiation therapy, Phys. Med. Biol., 37 (1992), 871-890.   Google Scholar

[34]

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[35]

W. K. KellyO. A. O'ConnorL. M. KrugJ. H. ChiaoM. HeaneyT. CurleyB. MacGregore-CortelliW. TongJ. P. SecristL. SchwartzS. RichardsonE. ChuS. OlgacP. A. MarksH. Scher and V. M. Richon, Phase 1 study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer, Journal of Clinical Oncology, 23 (2005), 3923-3931.  doi: 10.1200/JCO.2005.14.167.  Google Scholar

[36]

Y. KimK. M. JooJ. Jin and D. H. Nam, Cancer stem cells and their mechanism of chemo-radiation resistance, Int. J. Stem Cells, 2 (2009), 109-114.  doi: 10.15283/ijsc.2009.2.2.109.  Google Scholar

[37]

P. KloedenS. Sonner and C. Surulescu, A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor, Discr. Cont. Dyn. Syst. B, 21 (2016), 2233-2254.  doi: 10.3934/dcdsb.2016045.  Google Scholar

[38]

N. Komarova and D. Wodarz, Effect of cellular quiescence on the success of targeted CML therapy, PLoS ONE, 2 (2007), e990.1-e990.9.   Google Scholar

[39]

J. Kroos, An SDE approach to cancer therapy including stem cells, Master thesis, University of Münster, 2014. Google Scholar

[40]

G. J. Kutscher and C. Burman, Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method, Int. J. Rad. Oncol. Biol. Phys., 16 (1989), 1623-1630.   Google Scholar

[41]

K. LederE. C. Holland and F. Michor, The therapeutic implications of plasticity of the cancer stem cell phenotype, PLoS ONE, 5 (2010), e14366.  doi: 10.1371/journal.pone.0014366.  Google Scholar

[42]

J. T. Lymann, Complication probability as assessed from dose-volume histograms, Radiation Research, 104 (1985), 13-19.   Google Scholar

[43]

C. MaenhautJ. E. DumontP. P. Roger and W. C. G. van Staveren, Cancer stem cells: A reality, a myth, a fuzzy concept or a misnomer? an analysis, Carcinogenesis, 31 (2010), 149-158.  doi: 10.1093/carcin/bgp259.  Google Scholar

[44]

S. Matsuda, T. Yan, A. Mizutani, T. Sota and Y. Hiramoto, et al., Cancer stem cells maintain a hierarchy of differentiation by creating their niche, Int. J. Cancer, 135 (2014), 27-36. doi: 10.1002/ijc.28648.  Google Scholar

[45]

P. MunozM. S. Iliou and M. Esteller, Epigenetic alterations involved in cancer stem cell reprogramming, Molecular Oncology, 6 (2012), 620-636.   Google Scholar

[46]

N. Navin, J. Kendall, J. Troge and P. Andrews, et al., Tumour evolution inferred by single-cell sequencing, Nature, 472 (2011), 90-94. doi: 10.1038/nature09807.  Google Scholar

[47]

A. Niemierko and M. Goitein., Modeling of normal tissue response to radiation: The critical volume model, Int. J. Rad. Onc. Biol. Phys., 25 (1993), 135-145.  doi: 10.1016/0360-3016(93)90156-P.  Google Scholar

[48]

A. OrojiM. Omer and S. Yarahmadian, An Itô stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy, J. Theor. Biol., 407 (2016), 128-137.  doi: 10.1016/j.jtbi.2016.07.035.  Google Scholar

[49]

F. PajonkE. Vlashi and W. H. McBride, Radiation resistance of cancer stem cells: The 4 R's of radiobiology revisited, Stem Cells, 28 (2010), 639-648.  doi: 10.1002/stem.318.  Google Scholar

[50]

G. A. Pavliotis., Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Springer, 2014. doi: 10.1007/978-1-4939-1323-7.  Google Scholar

[51]

P. R. Pazdziorek, Mathematical model of stem cell differentiation and tissue regeneration with stochastic noise, Bull. Math. Biol., 76 (2014), 1642-1669.  doi: 10.1007/s11538-014-9971-5.  Google Scholar

[52]

G. PowathilM. KohandelS. SivaloganathanA. Oza and M. Milosevic, Mathematical model of brain tumors: Effects of radiotherapy and chemotherapy, Physics in Medicine and Biology, 52 (2007), 3291-3306.   Google Scholar

[53]

X. S. QiC. J. Schultz and X. A. Li, An estimation of radiobiologic parameters from clinical outcomes for radiation treatment planning of brain tumor, Int. J. Radiat. Oncol. Biol. Phys., 64 (2006), 1570-1580.  doi: 10.1016/j.ijrobp.2005.12.022.  Google Scholar

[54]

P. Rajan and R. Srinivasan, Targeting cancer stem cells in cancer prevention and therapy, Stem Cell Rev., 4 (2008), 211-216.  doi: 10.1007/s12015-008-9037-x.  Google Scholar

[55]

G. Rosenkranz, Growth models with stochastic differential equations. An example from tumor immunology, Math. Biosci., 75 (1985), 175-186.  doi: 10.1016/0025-5564(85)90036-7.  Google Scholar

[56]

L. Salvatori, F. Caporuscio, A. Verdina, G. Starace and S. Crispi, et al., Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors, PLoS ONE, 7 (2012), e31467. doi: 10.1371/journal.pone.0031467.  Google Scholar

[57]

M. SehlH. ZhouJ. S. Sinsheimer and K. L. Lange, Extinction models for cancer stem cell therapy, Math. Biosci., 234 (2011), 132-146.  doi: 10.1016/j.mbs.2011.09.005.  Google Scholar

[58] S. Selvin, Survival Analysis for Epidemiologic and Medical Research. A Practical Guide, Cambridge Univ. Press, 2008.  doi: 10.1017/CBO9780511619809.  Google Scholar
[59]

Y. ShiozawaB. NieK. J. PientaT. M. Morgan and R. S. Taichman, Cancer stem cells and their role in metastasis, Pharmacology & Therapeutics, 138 (2013), 285-293.  doi: 10.1016/j.pharmthera.2013.01.014.  Google Scholar

[60]

A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publ. Company, 1965.  Google Scholar

[61]

A. L. StensjøenO. SolheimK. A. KvistadA. K. HåbergØ. Salvesen and E. M. Berntsen, Growth dynamics of untreated glioblastomas in vivo, Neuro Oncol., 17 (2015), 1402-1411.   Google Scholar

[62]

T. Stiehl and A. Marciniak-Czochra, Mathematical modeling of leukemogenesis and cancer stem cell dynamics, Mat. Model. Nat. Phenom., 7 (2012), 166-202.  doi: 10.1051/mmnp/20127199.  Google Scholar

[63]

T. StocksT. HillenJ. Gong and M. Burger, A stochastic model for the normal tissue complication probability (NTCP) and applications, Math. Med. Biol., 34 (2017), 469-492.  doi: 10.1093/imammb/dqw013.  Google Scholar

[64]

C. Surulescu and N. Surulescu., Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems, In P. Kloeden and C. Pötzsche, editors, Nonautonomous Dynamical Systems in the Life Sciences, LNM 2102, Springer, 2102 (2013), 269-307. doi: 10.1007/978-3-319-03080-7_9.  Google Scholar

[65]

B. T. TanC. Y. ParkL. E. Ailles and I. L. Weissman, The cancer stem cell hypothesis: A work in progress, Lab. Invest., 86 (2006), 1203-1207.  doi: 10.1038/labinvest.3700488.  Google Scholar

[66]

C. M. van LeeuwenA. L. OeiJ. CrezeeA. BelN. A. P. FrankenL. J. A. Stalpers and H. P. Kok, The alfa and beta of tumours: A review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies, Radiation Oncology, 13 (2018), 96.  doi: 10.1186/s13014-018-1040-z.  Google Scholar

[67]

H. YoussefpourX. LiA. D. Lander and J. S. Lowengrub, Multispecies model of cell lineages and feedback control in solid tumors, Journal of Theoretical Biology, 304 (2012), 39-59.  doi: 10.1016/j.jtbi.2012.02.030.  Google Scholar

[68]

M. Zaider and G. N. Minerbo, Tumor control probability: A formulation applicable to any temporal protocol of dose delivery, Phys. Math. Biol., 45 (2000), 279-293.   Google Scholar

Figure 1.  Interaction of differentiated cancer cells $ c $ and cancer stem cells $ s $
Figure 2.  Several trajectories of the solution components of system (1) and averages (black lines) of $ 10^3 $ trajectories solved with the Euler-Maruyama algorithm and using parameter values as in Table 2. Initial condition: $ (c,s)^t = (0.9,0.1)^t $
Figure 3.  Different trajectories of the SDE system (1) and their averages (thick black lines) for $ 10^3 $ trajectories when applying chemotherapy. Parameter values as in Table 2, dose-dependent probability $ a_3 $ of symmetric splitting of a cancer stem cell into differentiated cells as given in (3). Upper row: $ \tilde \alpha = 0.5 $, lower row: $ \tilde \alpha = 10 $
Figure 4.  Different trajectories of the solutions components of system (1) with the application of radiation therapy and their averages (thick black lines) over $ 10^3 $ trajectories. Parameter values as in Tables 2 and 4, follow up to $ 70 $ days
Figure 5.  Trajectories of the SDE model (1) with the simultaneous application of radio- and chemotherapy (differentiation promoter) and their averages (thick black lines) over $ 10^3 $ simulated trajectories. Parameter values as in Tables 2 and 4, with $ \tilde{\alpha} = 10 $, follow up to $ 70 $ days
Figure 6.  Different trajectories of the SDE model (1) with the alternating application of chemotherapy and radiation therapy and their mean values (thick black lines) for $ 10^3 $ simulated trajectories. Parameter values as in Tables 2 and 4 with $ \tilde{\alpha} = 10 $, follow up to $ 70 $ days
Figure 7.  Trajectories of (1) and their averages (thick black lines) over $ 10^3 $ simulated trajectories with a time-discrete radiotherapy solved with the Euler-Maruyama scheme, parameter values as in Table 2. Subfigures 7(a) and 7(b) show the results of the simulation for the two subpopulations of cancer cells and 7(c) shows the processes $ L_t^{(s)} $, $ L_t^{(c)} $
Figure 8.  TCP for the different therapy strategies based on (1), with $ 10^3 $ simulations
Figure 9.  Trajectories of (12) for normal tissue density and of CSCs and DCs as solutions to (1). Their averages over $ 10^3 $ trajectories are shown as thick black lines. Parameter values are given in Table 5. The dotted grey line represents the threshold value $ \gamma $ for the normal cell density
Figure 10.  Trajectories of (12) for normal tissue density and of CSCs and DCs as solutions to (1) for the differentiation therapy approach in Section 3.1, with $ \widetilde \alpha = 10 $. Their averages over $ 10^3 $ trajectories are shown as thick black lines. Parameter values are given in Table 5. The dotted grey line represents the threshold value $ \gamma $ for the normal cell density
Figure 11.  Trajectories of the SDE (12) and of system (1) and their averages (black lines) over $ 10^3 $ trajectories. Parameters as in Tables 2, 4, 5 and 6. Plots 11(a)-11(c): effect of radiation therapy only. Plots 11(d)-11(f): concurrent chemo and radiotherapy. Plots 11(g)-11(i): alternating chemo and radiotherapy
Figure 12.  Trajectories of the SDE (12) and of processes $ c(t) $, $ s(t) $ obtained by applying time discrete therapy: radiotherapy alone (plots 12(a)-12(c)); in a concurrent (plots 12(d)- 12(f)) or an alternating way (plots 12(g)-12(i)). Averages over $ 10^3 $ trajectories are shown in thick black lines. Parameters as in Tables 2, 4, 5 and 6
Figure 13.  NTCP for the different therapy strategies based on SDEs, $ 10^3 $ simulations
Figure 14.  UTCP for the different treatment strategies based on $ 10^3 $ simulations of (1) and (12)
Figure 15.  Solution components of (27) and (29) at various time moments, no therapy applied. Left column: expected total tumor burden, middle: expected density of cancer stem cells, right: expected deviations of normal cells from critical threshold for which $ \gamma = 0.7 $. Plots 15(a)-15(c): initial state, 15(d)-15(f): 10 days, 15(g)-15(i): 30 days, 15(j)-15(l): 70 days
Figure 16.  Solution of (29) at different times, with no therapy applied. Shown are expected deviations of normal cells from the critical threshold for which $ \gamma = 0.85 $. Plot 16(a): 10 days, 16(b): 30 days, 16(c): 70 days
Table 1.  Transition probabilities for $ {\bf X} = (c,s)^t $, according to the scheme in Figure 1
Changes in $ {\bf X} $ Probability
$ \Delta X^{(1)} = (1,0)^t $ $ p_1=a_2(c) b_ss \Delta t $
$ \Delta X^{(2)} = (-1,0)^t $ $ p_2=d_c c \Delta t $
$ \Delta X^{(3)} = (0,1)^t $ $ p_3= a_1(c)b_s s \Delta t $
$ \Delta X^{(4)} = (0,-1)^t $ $ p_4= d_s s\Delta t $
$ \Delta X^{(5)} = (2,-1)^t $ $ p_5= a_3(c)b_s s \Delta t $
$ \Delta X^{(6)} = (-1,1)^t $ $ p_6=d_cca_1(c)b_ss\Delta t $
$ \Delta X^{(7)} = (2,0)^t $ $ p_7=0 $
$ \Delta X^{(8)} = (-1,-1)^t $ $ p_8=d_cc d_ss\Delta t $
$ \Delta X^{(9)} = (1,-1)^t $ $ p_9=b_cc d_ss\Delta t=0 $
$ \Delta X^{(10)} = (1,1)^t $ $ p_{10}=b_cc a_1(c)b_ss\Delta t=0 $
$ \Delta X^{(11)} = (3,-1)^t $ $ p_{11}=0 $
$ \Delta X^{(12)} = (0,0)^t $ $ p_{12}=1-\sum_{i=1}^{11} p_i $
Changes in $ {\bf X} $ Probability
$ \Delta X^{(1)} = (1,0)^t $ $ p_1=a_2(c) b_ss \Delta t $
$ \Delta X^{(2)} = (-1,0)^t $ $ p_2=d_c c \Delta t $
$ \Delta X^{(3)} = (0,1)^t $ $ p_3= a_1(c)b_s s \Delta t $
$ \Delta X^{(4)} = (0,-1)^t $ $ p_4= d_s s\Delta t $
$ \Delta X^{(5)} = (2,-1)^t $ $ p_5= a_3(c)b_s s \Delta t $
$ \Delta X^{(6)} = (-1,1)^t $ $ p_6=d_cca_1(c)b_ss\Delta t $
$ \Delta X^{(7)} = (2,0)^t $ $ p_7=0 $
$ \Delta X^{(8)} = (-1,-1)^t $ $ p_8=d_cc d_ss\Delta t $
$ \Delta X^{(9)} = (1,-1)^t $ $ p_9=b_cc d_ss\Delta t=0 $
$ \Delta X^{(10)} = (1,1)^t $ $ p_{10}=b_cc a_1(c)b_ss\Delta t=0 $
$ \Delta X^{(11)} = (3,-1)^t $ $ p_{11}=0 $
$ \Delta X^{(12)} = (0,0)^t $ $ p_{12}=1-\sum_{i=1}^{11} p_i $
Table 2.  Summary of the model parameters for cancer cells based on [61]
Parameter $ b_s $ $ d_c $ $ d_s $ $ \widetilde{a_1} $ $ \widetilde{a_2} $ $ \widetilde{a_3} $
Value $ \log 2/55 $ $ \log 2/60 $ $ \log 2/200 $ $ 0.5 $ $ 0.05 $ $ 0.1 $
Parameter $ b_s $ $ d_c $ $ d_s $ $ \widetilde{a_1} $ $ \widetilde{a_2} $ $ \widetilde{a_3} $
Value $ \log 2/55 $ $ \log 2/60 $ $ \log 2/200 $ $ 0.5 $ $ 0.05 $ $ 0.1 $
Table 3.  Persistence times for the whole tumor $ c+s $, averaged over 1000 trajectories, for different compositions $ (c,s) $ of the initial tumor
Initial values $ (c_0,s_0)^t $ Persistence time (in days)
$ (0.01, 0.01) $ 16.313
$ (0.1,0.1) $ 56.052
$ (0.99,0.01) $ 69.463
$ (0.8, 0.2) $ 69.790
$ (0.95,0.05) $ 69.791
$ (0.7, 0.3) $ 69.799
$ (0.4,0.6) $ 69.804
$ (0.3,0.7) $ 69.807
$ (0.6, 0.4) $ 69.871
$ (0.9,0.1) $ 69.892
$ (0.5,0.5) $ 69.909
$ (1, 1) $ 70
Initial values $ (c_0,s_0)^t $ Persistence time (in days)
$ (0.01, 0.01) $ 16.313
$ (0.1,0.1) $ 56.052
$ (0.99,0.01) $ 69.463
$ (0.8, 0.2) $ 69.790
$ (0.95,0.05) $ 69.791
$ (0.7, 0.3) $ 69.799
$ (0.4,0.6) $ 69.804
$ (0.3,0.7) $ 69.807
$ (0.6, 0.4) $ 69.871
$ (0.9,0.1) $ 69.892
$ (0.5,0.5) $ 69.909
$ (1, 1) $ 70
Table 4.  Model parameters for radiation therapy based on [53,66], where no difference was made between various phenotypes of tumor cells. The parameter $ \beta _s $ was chosen here slightly larger than $ \beta _c $ to account for the reduced sensitivity of CSCs towards therapy
Parameter $ \alpha\ (\text{in Gy}^{-1}) $ $ \beta_c \ (\text{in Gy}^{-2}) $ $ \beta_s \ (\text{in Gy}^{-2}) $ $ d $ (in Gy) $ \nu $ (in days)
Value $ 0.0906 $ $ 0.006 $ $ 0.00605 $ $ 2 $ $ 25 $
Parameter $ \alpha\ (\text{in Gy}^{-1}) $ $ \beta_c \ (\text{in Gy}^{-2}) $ $ \beta_s \ (\text{in Gy}^{-2}) $ $ d $ (in Gy) $ \nu $ (in days)
Value $ 0.0906 $ $ 0.006 $ $ 0.00605 $ $ 2 $ $ 25 $
Table 5.  Model parameters for normal tissue (without therapy)
Parameter Description Value
$ \mu_n $ constant maximum birth rate (in $ \text{day}^{-1} $) $ 0.01 $
$ \delta_n $ interaction factor $ 0.002 $
$ \gamma $ threshold of functionality $ 0.7 $
$ n_0 $ initial density of normal tissue $ 1 $
$ M $ actual carrying capacity (normalized) $ 1 $
Parameter Description Value
$ \mu_n $ constant maximum birth rate (in $ \text{day}^{-1} $) $ 0.01 $
$ \delta_n $ interaction factor $ 0.002 $
$ \gamma $ threshold of functionality $ 0.7 $
$ n_0 $ initial density of normal tissue $ 1 $
$ M $ actual carrying capacity (normalized) $ 1 $
Table 6.  Model parameters for radiotherapy affecting normal tissue, based on [21]
Parameter Description Value
$ \alpha _n $ sensitivity parameter (in Gy$ ^{-1} $) $ 0.0025 $
$ \beta _n $ sensitivity parameter (in Gy$ ^{-2} $) $ 0.003 $
Parameter Description Value
$ \alpha _n $ sensitivity parameter (in Gy$ ^{-1} $) $ 0.0025 $
$ \beta _n $ sensitivity parameter (in Gy$ ^{-2} $) $ 0.003 $
[1]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[2]

Christian Engwer, Markus Knappitsch, Christina Surulescu. A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences & Engineering, 2016, 13 (2) : 443-460. doi: 10.3934/mbe.2015011

[3]

Dominik Wodarz. Computational modeling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 939-957. doi: 10.3934/mbe.2013.10.939

[4]

Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945

[5]

Eduardo Casas, Boris Vexler, Enrique Zuazua. Sparse initial data identification for parabolic PDE and its finite element approximations. Mathematical Control & Related Fields, 2015, 5 (3) : 377-399. doi: 10.3934/mcrf.2015.5.377

[6]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[7]

Pedro M. Jordan, Barbara Kaltenbacher. Introduction to the special volume ``Mathematics of nonlinear acoustics: New approaches in analysis and modeling''. Evolution Equations & Control Theory, 2016, 5 (3) : i-ii. doi: 10.3934/eect.201603i

[8]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[9]

Yu Fu, Weidong Zhao, Tao Zhou. Efficient spectral sparse grid approximations for solving multi-dimensional forward backward SDEs. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3439-3458. doi: 10.3934/dcdsb.2017174

[10]

Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915

[11]

Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004

[12]

Michael Leguèbe. Cell scale modeling of electropermeabilization by periodic pulses. Mathematical Biosciences & Engineering, 2015, 12 (3) : 537-554. doi: 10.3934/mbe.2015.12.537

[13]

A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks & Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333

[14]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[15]

A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250

[16]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[17]

Chien Hsun Tseng. Analytical modeling of laminated composite plates using Kirchhoff circuit and wave digital filters. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2213-2252. doi: 10.3934/jimo.2019051

[18]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[19]

Katarzyna A. Rejniak. A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions. Mathematical Biosciences & Engineering, 2005, 2 (3) : 643-655. doi: 10.3934/mbe.2005.2.643

[20]

J. A. López Molina, M. J. Rivera, E. Berjano. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences & Engineering, 2016, 13 (2) : 281-301. doi: 10.3934/mbe.2015003

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (111)
  • HTML views (172)
  • Cited by (0)

[Back to Top]