A system modeling bacteriophage treatments with coinfections in a noisy context is analysed. We prove that in a small noise regime, the system converges in the long term to a bacteria-free equilibrium. Moreover, we compare the treatment with coinfection with the treatment without coinfection, showing how coinfection affects the convergence to the bacteria-free equilibrium.
Citation: |
[1] | S. T. Abedon, Lysis from without, Bacteriophage, 1 (2011), 46-49. doi: 10.4161/bact.1.1.13980. |
[2] | S. T. Abedon, Bacteriophage secondary infection, Virologica Sinica, 30 (2015), 3-10. doi: 10.1007/s12250-014-3547-2. |
[3] | S. T. Abedon, P. García, P. Mullany and R. Aminov, Phage therapy: Past, present and future, Frontiers in Microbiology, 8 (2017), 201700981. doi: 10.3389/978-2-88945-251-4. |
[4] | S. Alizon, Co-infection and super-infection models in evolutionary epidemiology, Interface Focus, 3 (2013), 20130031. doi: 10.1098/rsfs.2013.0031. |
[5] | M. van Baalen and M. W. Sabelis, The dynamics of multiple infection and the evolution of virulence, Am. Nat., 146 (1995), 881-910. doi: 10.1086/285830. |
[6] | X. Bardina, D. Bascompte, C. Rovira and S. Tindel, An analysis of a stochastic model for bacteriophage systems, Mathematical Biosciences, 241 (2013), 99-108. doi: 10.1016/j.mbs.2012.09.009. |
[7] | C. Bardina, D. Spricigo, M. Corts and M. Llagostera, Significance of the bacteriophage treatment schedule in reducing salmonella colonization of poultry, Applied and Environmental Microbiology, 78 (2012), 6600-6607. doi: 10.1128/AEM.01257-12. |
[8] | C. Barril, À. Calsina and J. Ripoll, On the reproduction number of a gut microbiota model, Bull. Math. Biol., 79 (2017), 2727-2746. doi: 10.1007/s11538-017-0352-8. |
[9] | E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Anal. Real World Appl., 2 (2001), 35-74. doi: 10.1016/S0362-546X(99)00285-0. |
[10] | B. J. M. Bohannan and R. E. Lenski, Linking genetic change to community evolution: Insights from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362-377. doi: 10.1046/j.1461-0248.2000.00161.x. |
[11] | S. N. Busenberg and K. L. Cooke, The effect of integral conditions in certain equations modelling epidemics and population growth, J. Math. Biol., 10 (1980), 13-32. doi: 10.1007/BF00276393. |
[12] | B. J. Cairns, A. R. Timms, V. A. A. Jansen, I. F. Connerton and R. J. H. Payne, Quantitative models of in vitro bacteriophage host dynamics and their application to phage therapy, PLoS Pathog., 5 (2009), e1000253. doi: 10.1371/journal.ppat.1000253. |
[13] | À. Calsina, J. M. Palmada and J. Ripoll, Optimal latent period in a bacteriophage population model structured by infection-age, Math. Models and Methods in Appl. Sci., 21 (2011), 693-718. doi: 10.1142/S0218202511005180. |
[14] | A. Campbell, Conditions for the existence of bacteriophages, Evolution, 15 (1961), 153-165. doi: 10.1111/j.1558-5646.1961.tb03139.x. |
[15] | O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. -O. Walther, Delay Equations Functional-, Complex-, and Nonlinear Analysis, Springer, 1995. doi: 10.1007/978-1-4612-4206-2. |
[16] | R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Lecture Notes in Mathematics, 2093. Springer, 2014. doi: 10.1007/978-3-319-02231-4. |
[17] | Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993. |
[18] | B. R. Levin and J. J. Bull, Population and evolutionary dynamics of phage therapy., Nature Reviews Microbiology, 2 (2004), 166-173. doi: 10.1038/nrmicro822. |
[19] | B. R. Levin and J. J. Bull, Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics, Am. Nat., 147 (1996), 881-898. doi: 10.1086/285884. |
[20] | B. R. Levin, F. M. Stewart and L. Chao, Resouce-limited growth, competition, and predation: A model an experimental studies with bacteria and bacteriophage, Am. Nat., 111 (1977), 3-24. doi: 10.1086/283134. |
[21] | J. Mosquera and F. R. Adler, Evolution of virulence: A unified framework for coinfection and superinfection, J. Theor. Biol., 195 (1998), 293-313. doi: 10.1006/jtbi.1998.0793. |
[22] | R. J. H. Payne and V. A. A. Jansen, Pharmacokinetic principles of bacteriophage therapy, Clin. Pharmacokinetics, 42 (2003), 315-325. doi: 10.2165/00003088-200342040-00002. |
[23] | H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8. |
[24] | H. L. Smith and R. T. Trevino, Bacteriophage infection dynamics: Multiple host binding sites, Math. Model. Nat. Phenom., 4 (2009), 109-134. doi: 10.1051/mmnp/20094604. |
[25] | H. L. Smith and H. R. Thieme, Persistence of bacteria and phages in a chemostat, J. Math. Biol., 64 (2012), 951-979. doi: 10.1007/s00285-011-0434-4. |
[26] | G. Stent, Molecular Biology of Bacterial Viruses, W. H. Freeman and Co., London, 1963. |
[27] | R. Weld, C. Butts and J. Heinemann, Models of phage growth and their applicability to phage therapy, J. Theor. Biol., 227 (2004), 1-11. doi: 10.1016/S0022-5193(03)00262-5. |