Disequilibria phenomenon appears in the economic model of durable stocks proposed by A. Panchuck and T. Puu in [
Citation: |
Figure 1. Edgeworth box in which the preferences of both agents are shown, where $ \alpha = 0.4 $, $ \beta = 0.6 $, the price $ p = 2 $ and the budget line is $ x+p y = 1.5 $. The points $ (x_1,y_1) $ and $ (x_2,y_2) $ represent the preferences of both agents for that static situation, since in those points they maximize their own level of satisfaction
Figure 8. The region limited by the lines defined $ A_{\alpha,p_0} $ for $ \alpha = 0.6 $ and $ \delta = 5.4 $, $ p_0 = \frac{1}{\alpha\delta} $. We have considered initial conditions $ (x_0,y_0) = (\frac{j}{100},0.1) $ for $ j = 1,\ldots 100 $, we have computed orbits of length $ 1000 $ and we have drawn the last $ 200 $ points. We can see as the projection of $ \omega $–limit sets on $ [0,1]^2 $ are points that belong to the set $ A_{\alpha,p_0} $
Figure 9. Fix $ \delta \in [0,5] $. From left to right, in dark, stability regions are showed for parameter values $ \alpha = 0.1 $ and $ \beta = 0.9 $ (left), $ \alpha = 0.3 $ and $ \beta = 0.7 $ (middle) and $ \alpha = 0.4 $ and $ \beta = 0.5 $ (right). $ \delta $ is in Y–axis and $ x $ on the X–axis
[1] |
L. Block, J. Keesling, S. H. Li and K. Peterson, An improved algorithm for computing topological entropy, Journal of Statistical Physics, 55 (1989), 929-939.
doi: 10.1007/BF01041072.![]() ![]() ![]() |
[2] |
J. S. Cánovas, On $\omega$-limit sets of non-autonomous discrete systems, Journal of Difference Equations and Applications, 12 (2006), 95-100.
doi: 10.1080/10236190500424274.![]() ![]() ![]() |
[3] |
J. S. Cánovas and M. Muñoz-Guillermo, On the complexity of economic dynamics: An approach through topological entropy, Chaos, Solitons Fractals, 103 (2017), 163-176.
doi: 10.1016/j.chaos.2017.05.030.![]() ![]() ![]() |
[4] |
W. de Melo and S. van Strien, One-dimensional Dynamics, Springer-Verlag, 1993.
doi: 10.1007/978-3-642-78043-1.![]() ![]() ![]() |
[5] |
F. Y. Edgeworth, The pure theory of international values, Econ. J., (1894), 35–50.
![]() |
[6] |
J. Graczyk, D. Sands and G. Światec, Metric attractors for smooth unimodal maps, Ann. Math., 159 (2004), 725-740.
doi: 10.4007/annals.2004.159.725.![]() ![]() ![]() |
[7] |
A. Panchuck and T. Puu, Dynamics of a durable commodity market involving trade at disequilibrium, Commun. Nonlinear Sci. Numer. Simulat., 58 (2018), 2-14.
doi: 10.1016/j.cnsns.2017.08.003.![]() ![]() ![]() |
[8] |
T. Puu, Disequilibrium trade and the dynamics of stock markets, in M. Faggini, A. Parziale eds. Complexity in Economics: Cutting Edge Research, Springer, (2014), 225–245.
![]() ![]() |
[9] |
W. E. Ricker, Stock and recruitment, Journal of The Fisheries Research Board of Canada, 11 (1954), 559-623.
doi: 10.1139/f54-039.![]() ![]() |
[10] |
D. Singer, Stable orbits and bifurcations of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020.![]() ![]() ![]() |
Edgeworth box in which the preferences of both agents are shown, where
Ricker map
On the left, bifurcation diagram of price for
The shaded area represents
The set
The set
The set
The region limited by the lines defined
Fix