\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the dynamics of a durable commodity market

  • * Corresponding author: Jose.Canovas@upct.es

    * Corresponding author: Jose.Canovas@upct.es 

Authors have been partially supported by the Grant MTM2017-84079-P from Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER)

Abstract Full Text(HTML) Figure(9) Related Papers Cited by
  • Disequilibria phenomenon appears in the economic model of durable stocks proposed by A. Panchuck and T. Puu in [7]. In this paper, assuming that agents have the same utility functions, we give not only bounds of the disequilibrium but also prove the existence of a compact set of no-trade points such that it does not depend on the initial stock distribution. We also give a description of the nature of $ \omega $–limit sets in the general case proving that disequilibrium points can be attained as limit points of orbits.

    Mathematics Subject Classification: Primary: 37N40; Secondary: 26A18, 37B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Edgeworth box in which the preferences of both agents are shown, where $ \alpha = 0.4 $, $ \beta = 0.6 $, the price $ p = 2 $ and the budget line is $ x+p y = 1.5 $. The points $ (x_1,y_1) $ and $ (x_2,y_2) $ represent the preferences of both agents for that static situation, since in those points they maximize their own level of satisfaction

    Figure 2.  Ricker map $ f(p) = p e^{\delta(1-\alpha)}\, e^{-\delta\,\alpha\,p} $ for $ \alpha = 0.3 $ and $ \delta = 4.7 $

    Figure 3.  On the left, bifurcation diagram of price for $ \alpha = 0.3 $. We have computed orbits of length equal to $ 50000 $ and we have drawn the last $ 250 $ points. On the center and right, topological entropy and estimation of Lyapunov exponents, respectively

    Figure 4.  The shaded area represents $ A_{\alpha}(p) $ for $ \alpha = 0.6 $ and $ p = 2 $ whereas the line represents the points $ (x,y) $ such that for $ p = 2 $ the budget is $ l = 1.5 $

    Figure 5.  The set $ A_{\alpha ,p_0} $ is constructed for $ \alpha = \beta = 0.6 $, $ \delta = 7 $ and $ p_0 = \frac{1}{\alpha \delta} $ as the interior white set limited by the lines and containing the diagonal of the square

    Figure 6.  The set $ A_{0.3,2.4} $ is shadowed light. Isolated lines defines the set, indicating that it cannot be approached by as a limit, and orbits stick on it

    Figure 7.  The set $ A_{0.3,1} $ is shadowed light. No isolated lines give us the set, which is achieved by a limit

    Figure 8.  The region limited by the lines defined $ A_{\alpha,p_0} $ for $ \alpha = 0.6 $ and $ \delta = 5.4 $, $ p_0 = \frac{1}{\alpha\delta} $. We have considered initial conditions $ (x_0,y_0) = (\frac{j}{100},0.1) $ for $ j = 1,\ldots 100 $, we have computed orbits of length $ 1000 $ and we have drawn the last $ 200 $ points. We can see as the projection of $ \omega $–limit sets on $ [0,1]^2 $ are points that belong to the set $ A_{\alpha,p_0} $

    Figure 9.  Fix $ \delta \in [0,5] $. From left to right, in dark, stability regions are showed for parameter values $ \alpha = 0.1 $ and $ \beta = 0.9 $ (left), $ \alpha = 0.3 $ and $ \beta = 0.7 $ (middle) and $ \alpha = 0.4 $ and $ \beta = 0.5 $ (right). $ \delta $ is in Y–axis and $ x $ on the X–axis

  • [1] L. BlockJ. KeeslingS. H. Li and K. Peterson, An improved algorithm for computing topological entropy, Journal of Statistical Physics, 55 (1989), 929-939.  doi: 10.1007/BF01041072.
    [2] J. S. Cánovas, On $\omega$-limit sets of non-autonomous discrete systems, Journal of Difference Equations and Applications, 12 (2006), 95-100.  doi: 10.1080/10236190500424274.
    [3] J. S. Cánovas and M. Muñoz-Guillermo, On the complexity of economic dynamics: An approach through topological entropy, Chaos, Solitons Fractals, 103 (2017), 163-176.  doi: 10.1016/j.chaos.2017.05.030.
    [4] W. de Melo and S. van Strien, One-dimensional Dynamics, Springer-Verlag, 1993. doi: 10.1007/978-3-642-78043-1.
    [5] F. Y. Edgeworth, The pure theory of international values, Econ. J., (1894), 35–50.
    [6] J. GraczykD. Sands and G. Światec, Metric attractors for smooth unimodal maps, Ann. Math., 159 (2004), 725-740.  doi: 10.4007/annals.2004.159.725.
    [7] A. Panchuck and T. Puu, Dynamics of a durable commodity market involving trade at disequilibrium, Commun. Nonlinear Sci. Numer. Simulat., 58 (2018), 2-14.  doi: 10.1016/j.cnsns.2017.08.003.
    [8] T. Puu, Disequilibrium trade and the dynamics of stock markets, in M. Faggini, A. Parziale eds. Complexity in Economics: Cutting Edge Research, Springer, (2014), 225–245.
    [9] W. E. Ricker, Stock and recruitment, Journal of The Fisheries Research Board of Canada, 11 (1954), 559-623.  doi: 10.1139/f54-039.
    [10] D. Singer, Stable orbits and bifurcations of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.
  • 加载中

Figures(9)

SHARE

Article Metrics

HTML views(401) PDF downloads(137) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return