December  2019, 24(12): 6783-6815. doi: 10.3934/dcdsb.2019167

Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink

1. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

2. 

Department of Mathematics, Chengdu Normal University, Chengdu, Sichuan 611130, China

* Corresponding author: Lan Zou, Email: lanzou@163.com

Received  September 2018 Revised  February 2019 Published  December 2019 Early access  July 2019

Fund Project: This work is supported by NSFC grant 11831012 and 11771168.

In this paper, we study the local bifurcations of an enzyme-catalyzed reaction system with positive parameters $ \alpha $, $ \beta $, $ \gamma $ and integer $ n\geq 2 $. This system is orbitally equivalent to a polynomial differential system with order $ n+2 $. Although not all coordinates of equilibria can be computed because of the high degree of polynomial, parameter conditions for the coexistence of equilibria and their qualitative properties are obtained. Furthermore, it is proved that this system has various bifurcations, including saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation and Hopf bifurcation. Based on Lyapunov quantities, the order of weak focus is proved to be at most 3. Furthermore, parameter conditions of the exact order of weak focus are obtained. Finally, numerical simulations are employed to illustrate our results.

Citation: Juan Su, Bing Xu, Lan Zou. Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6783-6815. doi: 10.3934/dcdsb.2019167
References:
[1]

B. AgudaL. Frisch and L. Olsen, Experimental evidence for the coexistence of oscillatory and steady states in the peroxidase-oxidase reaction, J. Amer. Chem. Soc., 112 (1990), 6652-6656.  doi: 10.1021/ja00174a030.

[2]

X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232 (2009), 565-581.  doi: 10.1016/j.cam.2009.06.029.

[3]

G. Collins and A. Akritas, Polynomial real root isolation using Descartes rule of signs, in Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, ACM Press, 1976, 272–275.

[4]

F. DavidsonR. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.  doi: 10.1016/S0096-3003(01)00065-0.

[5]

D. ErleK. Mayer and T. Plesser, The existence of stable limite cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.  doi: 10.1016/0025-5564(79)90081-6.

[6]

T. Erneux and E. Reiss, Brussellator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246.  doi: 10.1137/0143082.

[7]

I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994. doi: 10.1007/978-0-8176-4771-1.

[8] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511608193.
[9]

A. Goldbeter, Oscillatory enzyme reactions and Michaelis-Menten kinetics, FEBS Letters, 587 (2013), 2778-2784.  doi: 10.1016/j.febslet.2013.07.031.

[10] P. Gray and S. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics, Clarendon Press, Oxford, 1990. 
[11]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.

[12]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.

[13]

D. HuangY. GongY. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized Brusselator, Math. Comput. Model., 42 (2005), 167-179.  doi: 10.1016/j.mcm.2004.02.041.

[14]

W. Ko, Bifurcations and asymptotic behavior of positive stead-state of an enzyme-catalyzed reaction-diffusion system, Nonlinearity, 29 (2016), 3777-3809.  doi: 10.1088/0951-7715/29/12/3777.

[15]

K. Kwek and W. Zhang, Periodic solutions and dynamics of a multimolecular reaction system, Math. Comput. Model., 36 (2002), 189-201.  doi: 10.1016/S0895-7177(02)00115-2.

[16]

R. Lefever and G. Nicolis., Chemical instabilities and sustained oscillations, J. Theor. Biol., 30 (1971), 267-284.  doi: 10.1016/0022-5193(71)90054-3.

[17]

Z. LengB. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reactions, Math. Comput. Model., 49 (2009), 556-562.  doi: 10.1016/j.mcm.2008.03.006.

[18]

J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.  doi: 10.1098/rspa.1999.0313.

[19]

J. MerkinR. Satnoianu and S. Scott., Travelling waves in a differential flow reactor with simple autocatalytic kinetics, J. Eng. Math., 33 (1998), 157-174.  doi: 10.1023/A:1004292023428.

[20]

M. MetcalfJ. Merkin and S. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. R. Soc. Lond. A, 447 (1994), 155-174.  doi: 10.1098/rspa.1994.0133.

[21]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695–1700. doi: 10.1063/1.1668896.

[22]

J. Ritt, Differential Algebra, Amer. Math. Soc., Providence, 1950. doi: 10.1090/coll/033.

[23]

Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.  doi: 10.1016/j.camwa.2003.05.012.

[24]

Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifurcat. Chaos, 25 (2015), 1550081, 26pp. doi: 10.1142/S0218127415500819.

[25]

Q. ZhangL. Liu and W. Zhang, Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network, Math. Biosci. Eng., 14 (2017), 1499-1514.  doi: 10.3934/mbe.2017078.

[26]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, RI, 1992.

show all references

References:
[1]

B. AgudaL. Frisch and L. Olsen, Experimental evidence for the coexistence of oscillatory and steady states in the peroxidase-oxidase reaction, J. Amer. Chem. Soc., 112 (1990), 6652-6656.  doi: 10.1021/ja00174a030.

[2]

X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232 (2009), 565-581.  doi: 10.1016/j.cam.2009.06.029.

[3]

G. Collins and A. Akritas, Polynomial real root isolation using Descartes rule of signs, in Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, ACM Press, 1976, 272–275.

[4]

F. DavidsonR. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.  doi: 10.1016/S0096-3003(01)00065-0.

[5]

D. ErleK. Mayer and T. Plesser, The existence of stable limite cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.  doi: 10.1016/0025-5564(79)90081-6.

[6]

T. Erneux and E. Reiss, Brussellator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246.  doi: 10.1137/0143082.

[7]

I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994. doi: 10.1007/978-0-8176-4771-1.

[8] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511608193.
[9]

A. Goldbeter, Oscillatory enzyme reactions and Michaelis-Menten kinetics, FEBS Letters, 587 (2013), 2778-2784.  doi: 10.1016/j.febslet.2013.07.031.

[10] P. Gray and S. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics, Clarendon Press, Oxford, 1990. 
[11]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.

[12]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.

[13]

D. HuangY. GongY. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized Brusselator, Math. Comput. Model., 42 (2005), 167-179.  doi: 10.1016/j.mcm.2004.02.041.

[14]

W. Ko, Bifurcations and asymptotic behavior of positive stead-state of an enzyme-catalyzed reaction-diffusion system, Nonlinearity, 29 (2016), 3777-3809.  doi: 10.1088/0951-7715/29/12/3777.

[15]

K. Kwek and W. Zhang, Periodic solutions and dynamics of a multimolecular reaction system, Math. Comput. Model., 36 (2002), 189-201.  doi: 10.1016/S0895-7177(02)00115-2.

[16]

R. Lefever and G. Nicolis., Chemical instabilities and sustained oscillations, J. Theor. Biol., 30 (1971), 267-284.  doi: 10.1016/0022-5193(71)90054-3.

[17]

Z. LengB. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reactions, Math. Comput. Model., 49 (2009), 556-562.  doi: 10.1016/j.mcm.2008.03.006.

[18]

J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.  doi: 10.1098/rspa.1999.0313.

[19]

J. MerkinR. Satnoianu and S. Scott., Travelling waves in a differential flow reactor with simple autocatalytic kinetics, J. Eng. Math., 33 (1998), 157-174.  doi: 10.1023/A:1004292023428.

[20]

M. MetcalfJ. Merkin and S. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. R. Soc. Lond. A, 447 (1994), 155-174.  doi: 10.1098/rspa.1994.0133.

[21]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695–1700. doi: 10.1063/1.1668896.

[22]

J. Ritt, Differential Algebra, Amer. Math. Soc., Providence, 1950. doi: 10.1090/coll/033.

[23]

Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.  doi: 10.1016/j.camwa.2003.05.012.

[24]

Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifurcat. Chaos, 25 (2015), 1550081, 26pp. doi: 10.1142/S0218127415500819.

[25]

Q. ZhangL. Liu and W. Zhang, Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network, Math. Biosci. Eng., 14 (2017), 1499-1514.  doi: 10.3934/mbe.2017078.

[26]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, RI, 1992.

Figure 1.  Reaction scheme with branched sink
Figure 2.  Partition of parameter quadrant for $ (\alpha, \gamma)\in \mathbb{R}_+^2 $
Figure 3.  Phase portraits of system (7) with $ (n, \alpha, \beta, \gamma) = (4, 0.55, 50, 0.1) $ in (A) and $ (n, \alpha, \beta, \gamma) = (4, 0.57, 50, 0.1) $ in (B)
Figure 4.  Phase portraits of system (7) with $ (n, \alpha, \beta, \gamma) = (4, 0.67247, 10, 0.2) $ in (A) and $ (n, \alpha, \beta, \gamma) = (4, 0.672, 10, 0.2) $ in (B)
Figure 5.  Oscillation of substrate and product in the reaction. Solutions of system (43) with initial value $ (x(0), y(0)) = (0.569, 0.255) $
Figure 6.  Two limit cycles bifurcate from Hopf bifurcation
Table 1.  Parameter conditions of equilibria for system (7)
Possibility of parameters Equilibria
$ (\alpha, \gamma)\in \mathcal{D}_0\cup \mathcal{D}_4 \cup\mathcal{L}_1 \cup\mathcal{L}_3 \cup \mathcal{P}_0 $ $ E_b $
$ (\alpha, \gamma)\in \mathcal{L}_4 $ $ E_b $ $ E_0 $
$ (\alpha, \gamma)\in \mathcal{D}_{1}\cup \mathcal{L}_{2} $ $ E_b $ $ E_1 $
$ (\alpha, \gamma)\in \mathcal{D}_{2} $ $ E_b $ $ E_2 $
$ (\alpha, \gamma)\in \mathcal{D}_{3} $ $ E_b $ $ E_1 $ $ E_2 $
Possibility of parameters Equilibria
$ (\alpha, \gamma)\in \mathcal{D}_0\cup \mathcal{D}_4 \cup\mathcal{L}_1 \cup\mathcal{L}_3 \cup \mathcal{P}_0 $ $ E_b $
$ (\alpha, \gamma)\in \mathcal{L}_4 $ $ E_b $ $ E_0 $
$ (\alpha, \gamma)\in \mathcal{D}_{1}\cup \mathcal{L}_{2} $ $ E_b $ $ E_1 $
$ (\alpha, \gamma)\in \mathcal{D}_{2} $ $ E_b $ $ E_2 $
$ (\alpha, \gamma)\in \mathcal{D}_{3} $ $ E_b $ $ E_1 $ $ E_2 $
[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[3]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[4]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[5]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[6]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[7]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[8]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[9]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[10]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[11]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[12]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[13]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[14]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[15]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[16]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[17]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

[18]

Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

[19]

Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1499-1514. doi: 10.3934/mbe.2017078

[20]

Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (158)
  • HTML views (279)
  • Cited by (0)

Other articles
by authors

[Back to Top]