December  2019, 24(12): 6783-6815. doi: 10.3934/dcdsb.2019167

Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink

1. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

2. 

Department of Mathematics, Chengdu Normal University, Chengdu, Sichuan 611130, China

* Corresponding author: Lan Zou, Email: lanzou@163.com

Received  September 2018 Revised  February 2019 Published  July 2019

Fund Project: This work is supported by NSFC grant 11831012 and 11771168.

In this paper, we study the local bifurcations of an enzyme-catalyzed reaction system with positive parameters $ \alpha $, $ \beta $, $ \gamma $ and integer $ n\geq 2 $. This system is orbitally equivalent to a polynomial differential system with order $ n+2 $. Although not all coordinates of equilibria can be computed because of the high degree of polynomial, parameter conditions for the coexistence of equilibria and their qualitative properties are obtained. Furthermore, it is proved that this system has various bifurcations, including saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation and Hopf bifurcation. Based on Lyapunov quantities, the order of weak focus is proved to be at most 3. Furthermore, parameter conditions of the exact order of weak focus are obtained. Finally, numerical simulations are employed to illustrate our results.

Citation: Juan Su, Bing Xu, Lan Zou. Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6783-6815. doi: 10.3934/dcdsb.2019167
References:
[1]

B. AgudaL. Frisch and L. Olsen, Experimental evidence for the coexistence of oscillatory and steady states in the peroxidase-oxidase reaction, J. Amer. Chem. Soc., 112 (1990), 6652-6656.  doi: 10.1021/ja00174a030.  Google Scholar

[2]

X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232 (2009), 565-581.  doi: 10.1016/j.cam.2009.06.029.  Google Scholar

[3]

G. Collins and A. Akritas, Polynomial real root isolation using Descartes rule of signs, in Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, ACM Press, 1976, 272–275. Google Scholar

[4]

F. DavidsonR. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.  doi: 10.1016/S0096-3003(01)00065-0.  Google Scholar

[5]

D. ErleK. Mayer and T. Plesser, The existence of stable limite cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.  doi: 10.1016/0025-5564(79)90081-6.  Google Scholar

[6]

T. Erneux and E. Reiss, Brussellator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246.  doi: 10.1137/0143082.  Google Scholar

[7]

I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994. doi: 10.1007/978-0-8176-4771-1.  Google Scholar

[8] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511608193.  Google Scholar
[9]

A. Goldbeter, Oscillatory enzyme reactions and Michaelis-Menten kinetics, FEBS Letters, 587 (2013), 2778-2784.  doi: 10.1016/j.febslet.2013.07.031.  Google Scholar

[10] P. Gray and S. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics, Clarendon Press, Oxford, 1990.   Google Scholar
[11]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[12]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[13]

D. HuangY. GongY. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized Brusselator, Math. Comput. Model., 42 (2005), 167-179.  doi: 10.1016/j.mcm.2004.02.041.  Google Scholar

[14]

W. Ko, Bifurcations and asymptotic behavior of positive stead-state of an enzyme-catalyzed reaction-diffusion system, Nonlinearity, 29 (2016), 3777-3809.  doi: 10.1088/0951-7715/29/12/3777.  Google Scholar

[15]

K. Kwek and W. Zhang, Periodic solutions and dynamics of a multimolecular reaction system, Math. Comput. Model., 36 (2002), 189-201.  doi: 10.1016/S0895-7177(02)00115-2.  Google Scholar

[16]

R. Lefever and G. Nicolis., Chemical instabilities and sustained oscillations, J. Theor. Biol., 30 (1971), 267-284.  doi: 10.1016/0022-5193(71)90054-3.  Google Scholar

[17]

Z. LengB. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reactions, Math. Comput. Model., 49 (2009), 556-562.  doi: 10.1016/j.mcm.2008.03.006.  Google Scholar

[18]

J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.  doi: 10.1098/rspa.1999.0313.  Google Scholar

[19]

J. MerkinR. Satnoianu and S. Scott., Travelling waves in a differential flow reactor with simple autocatalytic kinetics, J. Eng. Math., 33 (1998), 157-174.  doi: 10.1023/A:1004292023428.  Google Scholar

[20]

M. MetcalfJ. Merkin and S. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. R. Soc. Lond. A, 447 (1994), 155-174.  doi: 10.1098/rspa.1994.0133.  Google Scholar

[21]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695–1700. doi: 10.1063/1.1668896.  Google Scholar

[22]

J. Ritt, Differential Algebra, Amer. Math. Soc., Providence, 1950. doi: 10.1090/coll/033.  Google Scholar

[23]

Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.  doi: 10.1016/j.camwa.2003.05.012.  Google Scholar

[24]

Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifurcat. Chaos, 25 (2015), 1550081, 26pp. doi: 10.1142/S0218127415500819.  Google Scholar

[25]

Q. ZhangL. Liu and W. Zhang, Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network, Math. Biosci. Eng., 14 (2017), 1499-1514.  doi: 10.3934/mbe.2017078.  Google Scholar

[26]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, RI, 1992.  Google Scholar

show all references

References:
[1]

B. AgudaL. Frisch and L. Olsen, Experimental evidence for the coexistence of oscillatory and steady states in the peroxidase-oxidase reaction, J. Amer. Chem. Soc., 112 (1990), 6652-6656.  doi: 10.1021/ja00174a030.  Google Scholar

[2]

X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232 (2009), 565-581.  doi: 10.1016/j.cam.2009.06.029.  Google Scholar

[3]

G. Collins and A. Akritas, Polynomial real root isolation using Descartes rule of signs, in Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, ACM Press, 1976, 272–275. Google Scholar

[4]

F. DavidsonR. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.  doi: 10.1016/S0096-3003(01)00065-0.  Google Scholar

[5]

D. ErleK. Mayer and T. Plesser, The existence of stable limite cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.  doi: 10.1016/0025-5564(79)90081-6.  Google Scholar

[6]

T. Erneux and E. Reiss, Brussellator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246.  doi: 10.1137/0143082.  Google Scholar

[7]

I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994. doi: 10.1007/978-0-8176-4771-1.  Google Scholar

[8] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511608193.  Google Scholar
[9]

A. Goldbeter, Oscillatory enzyme reactions and Michaelis-Menten kinetics, FEBS Letters, 587 (2013), 2778-2784.  doi: 10.1016/j.febslet.2013.07.031.  Google Scholar

[10] P. Gray and S. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics, Clarendon Press, Oxford, 1990.   Google Scholar
[11]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[12]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[13]

D. HuangY. GongY. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized Brusselator, Math. Comput. Model., 42 (2005), 167-179.  doi: 10.1016/j.mcm.2004.02.041.  Google Scholar

[14]

W. Ko, Bifurcations and asymptotic behavior of positive stead-state of an enzyme-catalyzed reaction-diffusion system, Nonlinearity, 29 (2016), 3777-3809.  doi: 10.1088/0951-7715/29/12/3777.  Google Scholar

[15]

K. Kwek and W. Zhang, Periodic solutions and dynamics of a multimolecular reaction system, Math. Comput. Model., 36 (2002), 189-201.  doi: 10.1016/S0895-7177(02)00115-2.  Google Scholar

[16]

R. Lefever and G. Nicolis., Chemical instabilities and sustained oscillations, J. Theor. Biol., 30 (1971), 267-284.  doi: 10.1016/0022-5193(71)90054-3.  Google Scholar

[17]

Z. LengB. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reactions, Math. Comput. Model., 49 (2009), 556-562.  doi: 10.1016/j.mcm.2008.03.006.  Google Scholar

[18]

J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.  doi: 10.1098/rspa.1999.0313.  Google Scholar

[19]

J. MerkinR. Satnoianu and S. Scott., Travelling waves in a differential flow reactor with simple autocatalytic kinetics, J. Eng. Math., 33 (1998), 157-174.  doi: 10.1023/A:1004292023428.  Google Scholar

[20]

M. MetcalfJ. Merkin and S. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. R. Soc. Lond. A, 447 (1994), 155-174.  doi: 10.1098/rspa.1994.0133.  Google Scholar

[21]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695–1700. doi: 10.1063/1.1668896.  Google Scholar

[22]

J. Ritt, Differential Algebra, Amer. Math. Soc., Providence, 1950. doi: 10.1090/coll/033.  Google Scholar

[23]

Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.  doi: 10.1016/j.camwa.2003.05.012.  Google Scholar

[24]

Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifurcat. Chaos, 25 (2015), 1550081, 26pp. doi: 10.1142/S0218127415500819.  Google Scholar

[25]

Q. ZhangL. Liu and W. Zhang, Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network, Math. Biosci. Eng., 14 (2017), 1499-1514.  doi: 10.3934/mbe.2017078.  Google Scholar

[26]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, RI, 1992.  Google Scholar

Figure 1.  Reaction scheme with branched sink
Figure 2.  Partition of parameter quadrant for $ (\alpha, \gamma)\in \mathbb{R}_+^2 $
Figure 3.  Phase portraits of system (7) with $ (n, \alpha, \beta, \gamma) = (4, 0.55, 50, 0.1) $ in (A) and $ (n, \alpha, \beta, \gamma) = (4, 0.57, 50, 0.1) $ in (B)
Figure 4.  Phase portraits of system (7) with $ (n, \alpha, \beta, \gamma) = (4, 0.67247, 10, 0.2) $ in (A) and $ (n, \alpha, \beta, \gamma) = (4, 0.672, 10, 0.2) $ in (B)
Figure 5.  Oscillation of substrate and product in the reaction. Solutions of system (43) with initial value $ (x(0), y(0)) = (0.569, 0.255) $
Figure 6.  Two limit cycles bifurcate from Hopf bifurcation
Table 1.  Parameter conditions of equilibria for system (7)
Possibility of parameters Equilibria
$ (\alpha, \gamma)\in \mathcal{D}_0\cup \mathcal{D}_4 \cup\mathcal{L}_1 \cup\mathcal{L}_3 \cup \mathcal{P}_0 $ $ E_b $
$ (\alpha, \gamma)\in \mathcal{L}_4 $ $ E_b $ $ E_0 $
$ (\alpha, \gamma)\in \mathcal{D}_{1}\cup \mathcal{L}_{2} $ $ E_b $ $ E_1 $
$ (\alpha, \gamma)\in \mathcal{D}_{2} $ $ E_b $ $ E_2 $
$ (\alpha, \gamma)\in \mathcal{D}_{3} $ $ E_b $ $ E_1 $ $ E_2 $
Possibility of parameters Equilibria
$ (\alpha, \gamma)\in \mathcal{D}_0\cup \mathcal{D}_4 \cup\mathcal{L}_1 \cup\mathcal{L}_3 \cup \mathcal{P}_0 $ $ E_b $
$ (\alpha, \gamma)\in \mathcal{L}_4 $ $ E_b $ $ E_0 $
$ (\alpha, \gamma)\in \mathcal{D}_{1}\cup \mathcal{L}_{2} $ $ E_b $ $ E_1 $
$ (\alpha, \gamma)\in \mathcal{D}_{2} $ $ E_b $ $ E_2 $
$ (\alpha, \gamma)\in \mathcal{D}_{3} $ $ E_b $ $ E_1 $ $ E_2 $
[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[4]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (114)
  • HTML views (238)
  • Cited by (0)

Other articles
by authors

[Back to Top]