In this paper, we consider the flocking problem of modified continu- ous-time and discrete-time Cucker-Smale models where every agent has its own intrinsic dynamics with Lipschitz property. The dynamics of the models are governed by the interplay between agents' own intrinsic dynamics and Cucker-Smale coupling dynamics. Based on the explicit construction of Lyapunov functionals, we show that conditional flocking would occur. And then we study the relationship between the Lipschitz constant $ L $ of the intrinsic dynamics and exponent $ \beta $ measuring the strength of the interaction between agents when flocking occurs. We also give two examples to show flocking might not occur for enough large $ L $ or unconditionally for $ \beta>0 $. At last, we provide several numerical simulations to illustrate our theoretical results.
Citation: |
[1] |
S. Ahn, H. Choi, S.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.
doi: 10.4310/CMS.2012.v10.n2.a10.![]() ![]() ![]() |
[2] |
S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51(2010), 103301, 17pp.
doi: 10.1063/1.3496895.![]() ![]() ![]() |
[3] |
H. Bae, Y.-P. Choi, S.-Y. Ha and M. Kang, Time-asymptotic interaction of flocking particles and an incompressible viscous fluid, Nonlinearity, 25 (2012), 1155-1177.
doi: 10.1088/0951-7715/25/4/1155.![]() ![]() ![]() |
[4] |
S. Bolouki and R. Malham$\acute{e}$, Theorems about ergodicity and class-ergodicity of chains with applications in known consensus models, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012.
doi: 10.1109/Allerton.2012.6483385.![]() ![]() |
[5] |
Y. Cao, W. Ren, D. Casbeer and C. Schumacher, Finite-time connectivity-preserving consensus of networked nonlinear agents with unknown Lipschitz terms, IEEE Trans. Autom. Control, 61 (2016), 1700-1705.
doi: 10.1109/TAC.2015.2479926.![]() ![]() ![]() |
[6] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290.![]() ![]() ![]() |
[7] |
I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.
doi: 10.1038/nature03236.![]() ![]() |
[8] |
F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Autom. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355.![]() ![]() ![]() |
[9] |
F. Cucker and J.-G. Dong, On the critical exponent for flocks under hierarchical leadership., Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.
doi: 10.1142/S0218202509003851.![]() ![]() ![]() |
[10] |
F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pure Appl., 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002.![]() ![]() ![]() |
[11] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
[12] |
F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x.![]() ![]() ![]() |
[13] |
F. Dalmao and E. Mordecki, Cucker-Smale flocking under hierarchical leadership and random interactions, SIAM J. Appl. Math., 71 (2011), 1307-1316.
doi: 10.1137/100785910.![]() ![]() ![]() |
[14] |
F. Dalmao and E. Mordecki, Hierarchical Cucker-Smale model subject to random failure, IEEE Trans. Autom. Control, 57 (2012), 1789-1793.
doi: 10.1109/TAC.2012.2188440.![]() ![]() ![]() |
[15] |
J.-G. Dong, Flocking under hierarchical leadership with a free-will leader, Internat. J. Robust Nonlinear Control, 23 (2013), 1891-1898.
![]() ![]() |
[16] |
J.-G. Dong and L. Qiu, Flocking of the Cucker-Smale Model on general digraphs, IEEE Trans. Autom. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608.![]() ![]() ![]() |
[17] |
S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9.![]() ![]() ![]() |
[18] |
S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2.![]() ![]() ![]() |
[19] |
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415.![]() ![]() ![]() |
[20] |
A. Jadbabaie, J. Lin and A. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Control, 48 (2003), 988-1001.
doi: 10.1109/TAC.2003.812781.![]() ![]() ![]() |
[21] |
C.-H. Li and S.-Y. Yang, A new discrete cucker-smale flocking model under hierarchical leadership, Disc. Cont. Dyn. Syst. B, 21 (2016), 2587-2599.
doi: 10.3934/dcdsb.2016062.![]() ![]() ![]() |
[22] |
Z. Li, Effectual leadership in flocks with hierarchy and individual preference, Disc. Cont. Dyn. Syst., 34 (2014), 3683-3702.
doi: 10.3934/dcds.2014.34.3683.![]() ![]() ![]() |
[23] |
Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709.
doi: 10.1090/qam/1401.![]() ![]() ![]() |
[24] |
Z. Li, S.-Y. Ha and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Models Methods Appl. Sci., 24 (2014), 1389-1419.
doi: 10.1142/S0218202514500043.![]() ![]() ![]() |
[25] |
Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774.![]() ![]() ![]() |
[26] |
S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9.![]() ![]() ![]() |
[27] |
S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621.
doi: 10.1137/120901866.![]() ![]() ![]() |
[28] |
R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control, 51 (2006), 401–420.
doi: 10.1109/TAC.2005.864190.![]() ![]() ![]() |
[29] |
L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, Journal of Guidance, Control, and Dynamics, 32 (2009), 527-537.
doi: 10.2514/1.36269.![]() ![]() |
[30] |
C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, Journal of Mathematical Analysis and Applications, 464 (2018), 1313-1332.
doi: 10.1016/j.jmaa.2018.04.070.![]() ![]() ![]() |
[31] |
L. Ru, Z. Li and X. Xue, Cucker-Smale flocking with randomly failed interactions, Journal of the Franklin Institute–Engineering and Applied Mathematics, 352 (2015), 1099-1118.
doi: 10.1016/j.jfranklin.2014.12.007.![]() ![]() ![]() |
[32] |
J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
doi: 10.1137/060673254.![]() ![]() ![]() |
[33] |
C. Somarakis, E. Paraskevas, S. Baras and N. Motee, Synchronization and collision avoidance in non-linear flocking networks of autonomous agents, 24th Mediterranean Conference on Control and Automation (MED), June 21-24, 2016, Athens, Greece.
![]() |
[34] |
C. Somarakis, E. Paraskevas, S. Baras and N. Motee, Convergence analysis of classes of asymmetric networks of cucker-smale type with deterministic perturbations, IEEE Transactions on Control of Network Systems, 5 (2018), 1852-1863.
doi: 10.1109/TCNS.2017.2765824.![]() ![]() |
[35] |
H. Su, G. Chen, X. Wang and Z. Lin, Adaptive second-order consensus of networked mobile agents with nonlinear dynamics, Automatica, 47 (2011), 368-375.
doi: 10.1016/j.automatica.2010.10.050.![]() ![]() ![]() |
[36] |
Y. Sun and W. Lin, A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system, Chaos, 25 (2015), 083118, 7pp.
doi: 10.1063/1.4929496.![]() ![]() ![]() |
[37] |
Y. Sun, Y. Wang and D. Zhao, Flocking of multi-agent systems with multiplicative and independent measurement noises, Physica A, 440 (2015), 81-89.
doi: 10.1016/j.physa.2015.08.005.![]() ![]() ![]() |
[38] |
T. V. Ton, N. T. H. Linh and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl., 12 (2014), 63-73.
doi: 10.1142/S0219530513500255.![]() ![]() ![]() |
[39] |
C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.
doi: 10.1007/s11538-006-9088-6.![]() ![]() ![]() |
[40] |
T. Vicsek, A. Czir$\acute{o}$k, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.![]() ![]() ![]() |
[41] |
T. Vicsek and A. Zefeiris, Collective motion, Physics Reports, 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004.![]() ![]() |
[42] |
W. Yu, G. Chen and M. Cao, Consensus in directed networks of agents with nonlinear dynamics, IEEE Trans. Autom. Control, 56 (2014), 1436-1441.
doi: 10.1109/TAC.2011.2112477.![]() ![]() ![]() |
[43] |
W. Yu, G. Chen, M. Cao and J. Kurths, Second-order consensus for multi-agent systems with directed topologies and nonlinear dynamics, IEEE Trans. Syst., Man, Cybern. B, Cybern., 40 (2010), 881-891.
![]() |
Dynamics of velocity
Evolutions of
Dynamics of velocity
Evolutions of
Dynamics of velocity
Evolutions of
Evolutions of