\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On global existence and blow-up for damped stochastic nonlinear Schrödinger equation

  • * Corresponding author: Jianbo Cui

    * Corresponding author: Jianbo Cui 

This work was supported by National Natural Science Foundation of China (No. 91630312, No. 91530118, No. 11021101 and No. 11290142)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider the well-posedness of the weakly damped stochastic nonlinear Schrödinger(NLS) equation driven by multiplicative noise. First, we show the global existence of the unique solution for the damped stochastic NLS equation in critical case. Meanwhile, the exponential integrability of the solution is proved, which implies the continuous dependence on the initial data. Then, we analyze the effect of the damped term and noise on the blow-up phenomenon. By modifying the associated energy, momentum and variance identity, we deduce a sharp blow-up condition for damped stochastic NLS equation in supercritical case. Moreover, we show that when the damped effect is large enough, the damped effect can prevent the blow-up of the solution with high probability.

    Mathematics Subject Classification: Primary: 60H15; Secondary: 35Q55, 35R60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. BarbuM. Röckner and D. Zhang, Stochastic nonlinear Schrödinger equations, Nonlinear Anal., 136 (2016), 168-194.  doi: 10.1016/j.na.2016.02.010.
    [2] V. BarbuM. Röckner and D. Zhang, Stochastic nonlinear Schrödinger equations: No blow-up in the non-conservative case, J. Differential Equations, 263 (2017), 7919-7940.  doi: 10.1016/j.jde.2017.08.030.
    [3] J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, volume 46 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 1999. doi: 10.1090/coll/046.
    [4] C. E. Bréhier, J. Cui, and J. Hong, Strong convergence rates of semi-discrete splitting approximations for stochastic Allen–Cahn equation, IMA J. Numer. Anal., dry052, https://doi.org/10.1093/imanum/dry052, 2018.
    [5] Z. Brzeźniak and A. Millet, On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold, Potential Anal., 41 (2014), 269-315.  doi: 10.1007/s11118-013-9369-2.
    [6] T. Cazenave, Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.
    [7] S. Cox, M. Hutzenthaler and A. Jentzen, Local lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations, arXiv: 1309.5595.
    [8] J. Cui and J. Hong, Analysis of a splitting scheme for damped stochastic nonlinear Schrödinger equation with multiplicative noise, SIAM J. Numer. Anal., 56 (2018), 2045-2069.  doi: 10.1137/17M1154904.
    [9] J. CuiJ. Hong and Z. Liu, Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differential Equations, 263 (2017), 3687-3713.  doi: 10.1016/j.jde.2017.05.002.
    [10] J. CuiJ. HongZ. Liu and W. Zhou, Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations, J. Differential Equations, 266 (2019), 5625-5663.  doi: 10.1016/j.jde.2018.10.034.
    [11] A. de Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Comm. Math. Phys., 205 (1999), 161-181.  doi: 10.1007/s002200050672.
    [12] A. de Bouard and A. Debussche, On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation, Probab. Theory Related Fields, 123 (2002), 76-96.  doi: 10.1007/s004400100183.
    [13] A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in H1, Stochastic Anal. Appl., 21 (2003), 97-126.  doi: 10.1081/SAP-120017534.
    [14] A. de Bouard and A. Debussche, Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise, Ann. Probab., 33 (2005), 1078-1110.  doi: 10.1214/009117904000000964.
    [15] F. Hornung, The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates, J. Evol. Equ., 18 (2018), 1085-1114.  doi: 10.1007/s00028-018-0433-7.
    [16] M. Hutzenthaler and A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients, arXiv: 1401.0295.
    [17] M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.
    [18] C. Sulem and P. Sulem, The Nonlinear Schrödinger Equation, volume 139 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999. Self-focusing and wave collapse.
    [19] M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.
    [20] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576. 
  • 加载中
SHARE

Article Metrics

HTML views(344) PDF downloads(204) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return