The main objective of this paper is to study the long-time behavior of solutions for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping for $ r>4. $ Inspired by the the methods of $ \ell $-trajectories in [
Citation: |
[1] | J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037. |
[2] | D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223. doi: 10.1007/s00220-003-0859-8. |
[3] | D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499. |
[4] | X. J. Cai and Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809. doi: 10.1016/j.jmaa.2008.01.041. |
[5] | A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071. doi: 10.3934/cpaa.2013.12.3047. |
[6] | V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002. |
[7] | A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754. doi: 10.1016/j.jde.2006.08.021. |
[8] | A. Cheskidov and S. S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306. doi: 10.1016/j.aim.2014.09.005. |
[9] | J. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404. |
[10] | R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations part Ⅰ: semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765. doi: 10.1016/j.jmaa.2011.03.053. |
[11] | B. Q. Dong and Y. Jia, Stability behaviors of Leray weak solutions to the three-dimensional Navier-Stokes equations, Nonlinear Anal. Real World Appl., 30 (2016), 41-58. doi: 10.1016/j.nonrwa.2015.10.011. |
[12] | A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley, New York, 1994. |
[13] | M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 713-718. doi: 10.1016/S0764-4442(00)00259-7. |
[14] | M. Efendiev and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730. doi: 10.1017/S030821050000408X. |
[15] | F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398. doi: 10.1023/A:1021937715194. |
[16] | L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, London, 1997. |
[17] | F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376. doi: 10.1007/s00205-002-0234-5. |
[18] | Y. Jia, X. W. Zhang and B. Q. Dong, The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. Real World Appl., 12 (2011), 1736-1747. doi: 10.1016/j.nonrwa.2010.11.006. |
[19] | Z. H. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009. doi: 10.1016/j.na.2012.04.014. |
[20] | Z. H. Jiang and M. X. Zhu, The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Methods Appl. Sci., 35 (2012), 97-102. doi: 10.1002/mma.1540. |
[21] | A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278. doi: 10.1016/j.jde.2007.06.008. |
[22] | J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357. doi: 10.3934/dcds.2010.26.1329. |
[23] | F. Li, B. You and Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4267-4284. |
[24] | Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029. doi: 10.1016/j.amc.2006.11.187. |
[25] | G. Łukaszewicz and J. C. Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 4211-4222. doi: 10.3934/dcds.2014.34.4211. |
[26] | J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, J. Differential Equations, 127 (1996), 498-518. doi: 10.1006/jdeq.1996.0080. |
[27] | J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, J. Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087. |
[28] | C. Y. Qian, A remark on the global regularity for the 3D Navier-Stokes equations, Appl. Math. Lett., 57 (2016), 126-131. doi: 10.1016/j.aml.2016.01.016. |
[29] | J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0. |
[30] | R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269. doi: 10.1016/j.jde.2006.03.004. |
[31] | G. R. Sell, Global attractor for the three dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33. doi: 10.1007/BF02218613. |
[32] | J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360. |
[33] | X. L. Song and Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252. doi: 10.3934/dcds.2011.31.239. |
[34] | X. L. Song and Y. R. Hou, Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351. doi: 10.1016/j.jmaa.2014.08.044. |
[35] | X. L. Song, F. Liang and J. Su, Exponential attractor for the three dimensional Navier-Stokes equation with nonlinear damping, Journal of Pure and Applied Mathematics: Advances and Applications, 14 (2015), 27-39. |
[36] | X. L. Song, F. Liang and J. H. Wu, Pullback $\mathcal{D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), Paper No. 145, 15 pp. doi: 10.1186/s13661-016-0654-z. |
[37] | R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[38] | L. Yang, M. H. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with a dynamical boundary condition, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2635-2651. doi: 10.3934/dcdsb.2012.17.2635. |
[39] | B. You and C. K. Zhong, Global attractors for $p$-Laplacian equations with dynamic flux boundary conditions, Adv. Nonlinear Stud., 13 (2013), 391-410. doi: 10.1515/ans-2013-0208. |
[40] | Z. J. Zhang, X. L. Wu and M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419. doi: 10.1016/j.jmaa.2010.11.019. |
[41] | Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822-1825. doi: 10.1016/j.aml.2012.02.029. |