• Previous Article
    Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment
  • DCDS-B Home
  • This Issue
  • Next Article
    Quasi-periodic solutions for a class of beam equation system
January  2020, 25(1): 55-80. doi: 10.3934/dcdsb.2019172

Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping

1. 

School of Mathematics and Statistics, Xidian University, Xi'an 710126, China

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

* Corresponding author: Bo You

Received  November 2018 Published  July 2019

Fund Project: This work was supported by the National Science Foundation of China Grant (11401459, 11801427, 11871389), the Natural Science Foundation of Shaanxi Province (2018JQ1009, 2018JM1012) and the Fundamental Research Funds for the Central Universities (xjj2018088).

The main objective of this paper is to study the long-time behavior of solutions for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping for $ r>4. $ Inspired by the the methods of $ \ell $-trajectories in [27], we will prove the existence of a finite dimensional pullback attractor and a pullback exponential attractor, which gives another way of considering the long-time behavior of the non-autonomous evolutionary equations.

Citation: Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172
References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.  doi: 10.1007/s003329900037.  Google Scholar

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.  doi: 10.1007/s00220-003-0859-8.  Google Scholar

[3]

D. BreschB. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.  Google Scholar

[4]

X. J. Cai and Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809.  doi: 10.1016/j.jmaa.2008.01.041.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[8]

A. Cheskidov and S. S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306.  doi: 10.1016/j.aim.2014.09.005.  Google Scholar

[9] J. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[10]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations part Ⅰ: semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[11]

B. Q. Dong and Y. Jia, Stability behaviors of Leray weak solutions to the three-dimensional Navier-Stokes equations, Nonlinear Anal. Real World Appl., 30 (2016), 41-58.  doi: 10.1016/j.nonrwa.2015.10.011.  Google Scholar

[12]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley, New York, 1994.  Google Scholar

[13]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

M. Efendiev and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[15]

F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398.  doi: 10.1023/A:1021937715194.  Google Scholar

[16]

L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, London, 1997.  Google Scholar

[17]

F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376.  doi: 10.1007/s00205-002-0234-5.  Google Scholar

[18]

Y. JiaX. W. Zhang and B. Q. Dong, The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. Real World Appl., 12 (2011), 1736-1747.  doi: 10.1016/j.nonrwa.2010.11.006.  Google Scholar

[19]

Z. H. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009.  doi: 10.1016/j.na.2012.04.014.  Google Scholar

[20]

Z. H. Jiang and M. X. Zhu, The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Methods Appl. Sci., 35 (2012), 97-102.  doi: 10.1002/mma.1540.  Google Scholar

[21]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[22]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[23]

F. LiB. You and Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4267-4284.   Google Scholar

[24]

Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[25]

G. Łukaszewicz and J. C. Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 4211-4222.  doi: 10.3934/dcds.2014.34.4211.  Google Scholar

[26]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, J. Differential Equations, 127 (1996), 498-518.  doi: 10.1006/jdeq.1996.0080.  Google Scholar

[27]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, J. Differential Equations, 181 (2002), 243-279.  doi: 10.1006/jdeq.2001.4087.  Google Scholar

[28]

C. Y. Qian, A remark on the global regularity for the 3D Navier-Stokes equations, Appl. Math. Lett., 57 (2016), 126-131.  doi: 10.1016/j.aml.2016.01.016.  Google Scholar

[29] J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[30]

R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269.  doi: 10.1016/j.jde.2006.03.004.  Google Scholar

[31]

G. R. Sell, Global attractor for the three dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33.  doi: 10.1007/BF02218613.  Google Scholar

[32]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[33]

X. L. Song and Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.  doi: 10.3934/dcds.2011.31.239.  Google Scholar

[34]

X. L. Song and Y. R. Hou, Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351.  doi: 10.1016/j.jmaa.2014.08.044.  Google Scholar

[35]

X. L. SongF. Liang and J. Su, Exponential attractor for the three dimensional Navier-Stokes equation with nonlinear damping, Journal of Pure and Applied Mathematics: Advances and Applications, 14 (2015), 27-39.   Google Scholar

[36]

X. L. Song, F. Liang and J. H. Wu, Pullback $\mathcal{D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), Paper No. 145, 15 pp. doi: 10.1186/s13661-016-0654-z.  Google Scholar

[37]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

L. YangM. H. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with a dynamical boundary condition, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2635-2651.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

[39]

B. You and C. K. Zhong, Global attractors for $p$-Laplacian equations with dynamic flux boundary conditions, Adv. Nonlinear Stud., 13 (2013), 391-410.  doi: 10.1515/ans-2013-0208.  Google Scholar

[40]

Z. J. ZhangX. L. Wu and M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419.  doi: 10.1016/j.jmaa.2010.11.019.  Google Scholar

[41]

Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822-1825.  doi: 10.1016/j.aml.2012.02.029.  Google Scholar

show all references

References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.  doi: 10.1007/s003329900037.  Google Scholar

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.  doi: 10.1007/s00220-003-0859-8.  Google Scholar

[3]

D. BreschB. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.  Google Scholar

[4]

X. J. Cai and Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809.  doi: 10.1016/j.jmaa.2008.01.041.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[8]

A. Cheskidov and S. S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306.  doi: 10.1016/j.aim.2014.09.005.  Google Scholar

[9] J. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[10]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations part Ⅰ: semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[11]

B. Q. Dong and Y. Jia, Stability behaviors of Leray weak solutions to the three-dimensional Navier-Stokes equations, Nonlinear Anal. Real World Appl., 30 (2016), 41-58.  doi: 10.1016/j.nonrwa.2015.10.011.  Google Scholar

[12]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley, New York, 1994.  Google Scholar

[13]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

M. Efendiev and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[15]

F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398.  doi: 10.1023/A:1021937715194.  Google Scholar

[16]

L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, London, 1997.  Google Scholar

[17]

F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376.  doi: 10.1007/s00205-002-0234-5.  Google Scholar

[18]

Y. JiaX. W. Zhang and B. Q. Dong, The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. Real World Appl., 12 (2011), 1736-1747.  doi: 10.1016/j.nonrwa.2010.11.006.  Google Scholar

[19]

Z. H. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009.  doi: 10.1016/j.na.2012.04.014.  Google Scholar

[20]

Z. H. Jiang and M. X. Zhu, The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Methods Appl. Sci., 35 (2012), 97-102.  doi: 10.1002/mma.1540.  Google Scholar

[21]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[22]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[23]

F. LiB. You and Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4267-4284.   Google Scholar

[24]

Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[25]

G. Łukaszewicz and J. C. Robinson, Invariant measures for non-autonomous dissipative dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 4211-4222.  doi: 10.3934/dcds.2014.34.4211.  Google Scholar

[26]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, J. Differential Equations, 127 (1996), 498-518.  doi: 10.1006/jdeq.1996.0080.  Google Scholar

[27]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, J. Differential Equations, 181 (2002), 243-279.  doi: 10.1006/jdeq.2001.4087.  Google Scholar

[28]

C. Y. Qian, A remark on the global regularity for the 3D Navier-Stokes equations, Appl. Math. Lett., 57 (2016), 126-131.  doi: 10.1016/j.aml.2016.01.016.  Google Scholar

[29] J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[30]

R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269.  doi: 10.1016/j.jde.2006.03.004.  Google Scholar

[31]

G. R. Sell, Global attractor for the three dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33.  doi: 10.1007/BF02218613.  Google Scholar

[32]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[33]

X. L. Song and Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.  doi: 10.3934/dcds.2011.31.239.  Google Scholar

[34]

X. L. Song and Y. R. Hou, Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351.  doi: 10.1016/j.jmaa.2014.08.044.  Google Scholar

[35]

X. L. SongF. Liang and J. Su, Exponential attractor for the three dimensional Navier-Stokes equation with nonlinear damping, Journal of Pure and Applied Mathematics: Advances and Applications, 14 (2015), 27-39.   Google Scholar

[36]

X. L. Song, F. Liang and J. H. Wu, Pullback $\mathcal{D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), Paper No. 145, 15 pp. doi: 10.1186/s13661-016-0654-z.  Google Scholar

[37]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

L. YangM. H. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with a dynamical boundary condition, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2635-2651.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

[39]

B. You and C. K. Zhong, Global attractors for $p$-Laplacian equations with dynamic flux boundary conditions, Adv. Nonlinear Stud., 13 (2013), 391-410.  doi: 10.1515/ans-2013-0208.  Google Scholar

[40]

Z. J. ZhangX. L. Wu and M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419.  doi: 10.1016/j.jmaa.2010.11.019.  Google Scholar

[41]

Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822-1825.  doi: 10.1016/j.aml.2012.02.029.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[16]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[19]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (287)
  • HTML views (332)
  • Cited by (0)

Other articles
by authors

[Back to Top]