• Previous Article
    Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries
  • DCDS-B Home
  • This Issue
  • Next Article
    Detailed analytic study of the compact pairwise model for SIS epidemic propagation on networks
January  2020, 25(1): 117-139. doi: 10.3934/dcdsb.2019175

Stochastic partial differential equation models for spatially dependent predator-prey equations

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

Received  November 2018 Revised  March 2019 Published  July 2019

Fund Project: This research was supported in part by the National Science Foundation under grant DMS-1710827

Stemming from the stochastic Lotka-Volterra or predator-prey equations, this work aims to model the spatial inhomogeneity by using stochastic partial differential equations (SPDEs). Compared to the classical models, the SPDE models are more versatile. To incorporate more qualitative features of the ratio-dependent models, the Beddington-DeAngelis functional response is also used. To analyze the systems under consideration, first existence and uniqueness of solutions of the SPDEs are obtained using the notion of mild solutions. Then sufficient conditions for permanence and extinction are derived.

Citation: Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175
References:
[1]

P. Acquistapace and B. Terreni, On the abstract nonautonomous parabolic Cauchy problem in the case of constant domains, Ann. Mat. Pura Appl., 140 (1985), 1-55.  doi: 10.1007/BF01776844.  Google Scholar

[2]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Eqs., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, Evolutionary Equations, Handb. Differ. Equ., North-Holland, Amsterdam, 1 (2004), 1–85.  Google Scholar

[4]

R. Arditi and L. R. Ginzburg, Coupling in predatorprey dynamics: Ratio-dependence, J. Theoret. Biol., 139 (1989), 311-326.   Google Scholar

[5]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.  Google Scholar

[6]

C. M. Carracedo and M. S. Alix, The Theory of Fractional Powers of Operators, Elsevier, Amsterdam, 2001.  Google Scholar

[7]

S. Cerrai, Second Order PDEs in Finite and Infinite Dimension. A Probabilistic Approach, , Lecture Notes in Mathematics Series 1762, Springer Verlag, 2001. doi: 10.1007/b80743.  Google Scholar

[8]

S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Relat. Fields, 125 (2003), 271-304.  doi: 10.1007/s00440-002-0230-6.  Google Scholar

[9]

R. F. Curtain and P. L. Falez, Itȏ's Lemma in infinite dimensions, J. Math. Anal. Appl., 31 (1970), 434-448.  doi: 10.1016/0022-247X(70)90037-5.  Google Scholar

[10]

G. Da Prato and L. Tubaro, Some results on semilinear stochastic differential equations in Hilbert spaces, Stochastics, 15 (1985), 271-281.  doi: 10.1080/17442508508833360.  Google Scholar

[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[12] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92, Cambridge University Press, London, 1989.  doi: 10.1017/CBO9780511566158.  Google Scholar
[13]

D. L. DeAngelisR. A. Goldstein and R. V. ONeill, A model for trophic interaction, Ecology, 56 (1975), 881-892.   Google Scholar

[14]

N.T. DieuN.H. DuD.H. Nguyen and and G. Yin, Protection zones for survival of species in random environment, SIAM J. Appl. Math., 76 (2016), 1382-1402.  doi: 10.1137/15M1032004.  Google Scholar

[15]

N. H. DuN. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models., J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.  Google Scholar

[16]

M. R. Garvie and C. Trenchea, Finite element approximation of spatially extended predator-prey interactions with the Holling type II functional response, Numer. Math., 107 (2007), 641-667.  doi: 10.1007/s00211-007-0106-x.  Google Scholar

[17]

C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomologist, 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[18]

K.-Y. LamY. Lou and F. Lutscher, The emergence of range limits in advective environments, SIAM J. Appl. Math., 76 (2016), 641-662.  doi: 10.1137/15M1027887.  Google Scholar

[19]

S. Li and J. Wu, Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator-prey system, J. Differential Equations, 265 (2018), 3754-3791.  doi: 10.1016/j.jde.2018.05.017.  Google Scholar

[20]

H. Y. Li and Y. Takeuchi, Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 374 (2011), 644-654.  doi: 10.1016/j.jmaa.2010.08.029.  Google Scholar

[21]

K. Liu, R. Douglas, H. Brezis and A. Jeffrey, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall/CRC, New York, 2005. Google Scholar

[22]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[23]

Y. Lou and B. Wang, Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772.  doi: 10.1007/s11784-016-0372-2.  Google Scholar

[24]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition, Ann. Appl. Probab., 9 (1999), 1226-1259.  doi: 10.1214/aoap/1029962871.  Google Scholar

[25]

D. H. Nguyen, N. N. Nguyen and G. Yin, Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model, submitted. Google Scholar

[26] E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series, 31. Princeton University Press, Princeton, NJ, 2005.   Google Scholar
[27]

G. Tessitore and J. Zabczyk, Strict positivity for stochastic heat equations, Stochastic Process. Appl., 77 (1998), 83-98.  doi: 10.1016/S0304-4149(98)00024-6.  Google Scholar

[28]

J. B. Walsh, An introduction to stochastic partial differential equations, École Dété de Probabilits de Saint-Flour, XIV-1984, volume 1180 of Lecture Notes in Math., pages 265–339. Springer, Berlin, 1986. doi: 10.1007/BFb0074920.  Google Scholar

[29]

M. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differential Equations, 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[30]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlga, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

P. Acquistapace and B. Terreni, On the abstract nonautonomous parabolic Cauchy problem in the case of constant domains, Ann. Mat. Pura Appl., 140 (1985), 1-55.  doi: 10.1007/BF01776844.  Google Scholar

[2]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Eqs., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, Evolutionary Equations, Handb. Differ. Equ., North-Holland, Amsterdam, 1 (2004), 1–85.  Google Scholar

[4]

R. Arditi and L. R. Ginzburg, Coupling in predatorprey dynamics: Ratio-dependence, J. Theoret. Biol., 139 (1989), 311-326.   Google Scholar

[5]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.  Google Scholar

[6]

C. M. Carracedo and M. S. Alix, The Theory of Fractional Powers of Operators, Elsevier, Amsterdam, 2001.  Google Scholar

[7]

S. Cerrai, Second Order PDEs in Finite and Infinite Dimension. A Probabilistic Approach, , Lecture Notes in Mathematics Series 1762, Springer Verlag, 2001. doi: 10.1007/b80743.  Google Scholar

[8]

S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Relat. Fields, 125 (2003), 271-304.  doi: 10.1007/s00440-002-0230-6.  Google Scholar

[9]

R. F. Curtain and P. L. Falez, Itȏ's Lemma in infinite dimensions, J. Math. Anal. Appl., 31 (1970), 434-448.  doi: 10.1016/0022-247X(70)90037-5.  Google Scholar

[10]

G. Da Prato and L. Tubaro, Some results on semilinear stochastic differential equations in Hilbert spaces, Stochastics, 15 (1985), 271-281.  doi: 10.1080/17442508508833360.  Google Scholar

[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[12] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92, Cambridge University Press, London, 1989.  doi: 10.1017/CBO9780511566158.  Google Scholar
[13]

D. L. DeAngelisR. A. Goldstein and R. V. ONeill, A model for trophic interaction, Ecology, 56 (1975), 881-892.   Google Scholar

[14]

N.T. DieuN.H. DuD.H. Nguyen and and G. Yin, Protection zones for survival of species in random environment, SIAM J. Appl. Math., 76 (2016), 1382-1402.  doi: 10.1137/15M1032004.  Google Scholar

[15]

N. H. DuN. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models., J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.  Google Scholar

[16]

M. R. Garvie and C. Trenchea, Finite element approximation of spatially extended predator-prey interactions with the Holling type II functional response, Numer. Math., 107 (2007), 641-667.  doi: 10.1007/s00211-007-0106-x.  Google Scholar

[17]

C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomologist, 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[18]

K.-Y. LamY. Lou and F. Lutscher, The emergence of range limits in advective environments, SIAM J. Appl. Math., 76 (2016), 641-662.  doi: 10.1137/15M1027887.  Google Scholar

[19]

S. Li and J. Wu, Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator-prey system, J. Differential Equations, 265 (2018), 3754-3791.  doi: 10.1016/j.jde.2018.05.017.  Google Scholar

[20]

H. Y. Li and Y. Takeuchi, Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 374 (2011), 644-654.  doi: 10.1016/j.jmaa.2010.08.029.  Google Scholar

[21]

K. Liu, R. Douglas, H. Brezis and A. Jeffrey, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall/CRC, New York, 2005. Google Scholar

[22]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[23]

Y. Lou and B. Wang, Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772.  doi: 10.1007/s11784-016-0372-2.  Google Scholar

[24]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition, Ann. Appl. Probab., 9 (1999), 1226-1259.  doi: 10.1214/aoap/1029962871.  Google Scholar

[25]

D. H. Nguyen, N. N. Nguyen and G. Yin, Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model, submitted. Google Scholar

[26] E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series, 31. Princeton University Press, Princeton, NJ, 2005.   Google Scholar
[27]

G. Tessitore and J. Zabczyk, Strict positivity for stochastic heat equations, Stochastic Process. Appl., 77 (1998), 83-98.  doi: 10.1016/S0304-4149(98)00024-6.  Google Scholar

[28]

J. B. Walsh, An introduction to stochastic partial differential equations, École Dété de Probabilits de Saint-Flour, XIV-1984, volume 1180 of Lecture Notes in Math., pages 265–339. Springer, Berlin, 1986. doi: 10.1007/BFb0074920.  Google Scholar

[29]

M. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differential Equations, 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[30]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlga, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

[1]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[2]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[3]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[4]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[5]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[6]

Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082

[7]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[8]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[9]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[10]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[11]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[12]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[13]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

[14]

Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831

[15]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[16]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167

[17]

Xiaoying Wang, Xingfu Zou. On a two-patch predator-prey model with adaptive habitancy of predators. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 677-697. doi: 10.3934/dcdsb.2016.21.677

[18]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[19]

Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133

[20]

Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028

2018 Impact Factor: 1.008

Article outline

[Back to Top]