The paper investigates the existence of global attractors for a few classes of multi-valued operators. We establish some criteria and give their applications to a strongly damped wave equation with fully supercritical nonlinearities and without the uniqueness of solutions. Moreover, the geometrical structure of the global attractors of the corresponding multi-valued operators is shown.
Citation: |
[1] |
A. V. Babin and M. I. Vishik, Maximal attractor of the semigroups corresponding to evolution differential equations, (Russian) Mat. Sb. (N.S.), 126 (1985), 397–419,432.
![]() ![]() |
[2] |
A. V. Babin, Attractor of the generalized semi-group generated by an elliptic equation in a cylindrical domain, Russian Acad. Sci. Izv. Math., 44 (1995), 207-223.
doi: 10.1070/IM1995v044n02ABEH001594.![]() ![]() ![]() |
[3] |
F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives, Int. J. Bifurcat. Chaos, 20 (2010), 2591-2636.
doi: 10.1142/S0218127410027246.![]() ![]() ![]() |
[4] |
J. M. Ball, On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Differential Equations, 27 (1978), 224-265.
doi: 10.1016/0022-0396(78)90032-3.![]() ![]() ![]() |
[5] |
J. M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Nonlinear Science, 7 (1997), 475-502.
doi: 10.1007/s003329900037.![]() ![]() ![]() |
[6] |
J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31.![]() ![]() ![]() |
[7] |
L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860.
doi: 10.3934/dcds.2008.22.835.![]() ![]() ![]() |
[8] |
L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.
doi: 10.1016/j.jde.2010.03.009.![]() ![]() ![]() |
[9] |
T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322.
doi: 10.1023/A:1024422619616.![]() ![]() ![]() |
[10] |
A. N. Carvalho, J. W. Cholewa and T. Dlotko, Damped wave equations with fast growing dissipative nonlinearities, Discrete Contin. Dyn. Syst.: A, 24 (2009), 1147-1165.
doi: 10.3934/dcds.2009.24.1147.![]() ![]() ![]() |
[11] |
V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topological Methods in Nonlinear Analysis, 7 (1996), 49-76.
doi: 10.12775/TMNA.1996.002.![]() ![]() ![]() |
[12] |
V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.
doi: 10.1016/S0021-7824(97)89978-3.![]() ![]() ![]() |
[13] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.
![]() ![]() |
[14] |
V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractors, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088.
doi: 10.3934/dcds.2012.32.2079.![]() ![]() ![]() |
[15] |
I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of AMS, Amer. Math. Soc. Providence, RI, 195 (2008), viii+183 pp.
doi: 10.1090/memo/0912.![]() ![]() ![]() |
[16] |
I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.
doi: 10.1016/j.jde.2011.08.022.![]() ![]() ![]() |
[17] |
H. Cui, Y. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Analysis, 128 (2015), 303-324.
doi: 10.1016/j.na.2015.08.009.![]() ![]() ![]() |
[18] |
S. Dashkovskiy, P. Feketa, O. Kapustyan and I. Romaniuk, Invariance and stability of global attractors for multi-valued impulsive dynamical systems, J. Math. Anal. Appl., 458 (2018), 193-218.
doi: 10.1016/j.jmaa.2017.09.001.![]() ![]() ![]() |
[19] |
F. Dell'Oro, Global attractors for strongly damped wave equations with subcritical-critical nonlinearities, Communications on Pure and Applied Analysis, 12 (2013), 1015-1027.
doi: 10.3934/cpaa.2013.12.1015.![]() ![]() ![]() |
[20] |
F. Dell'Oro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations, Nonlinearity, 24 (2011), 3413-3435.
doi: 10.1088/0951-7715/24/12/006.![]() ![]() ![]() |
[21] |
F. Dell'Oro and V. Pata, Strongly damped wave equations with critical nonlinearities, Nonlinear Analysis, 75 (2012), 5723-5735.
doi: 10.1016/j.na.2012.05.019.![]() ![]() ![]() |
[22] |
V. Kalantarov, A. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17 (2016), 2555-2584.
doi: 10.1007/s00023-016-0480-y.![]() ![]() ![]() |
[23] |
P. Kalita and G. Lukaszewicz, Global attractors for multi-valued semiflows with weak continuity properties, Nonlinear Analysis, 101 (2014), 124-143.
doi: 10.1016/j.na.2014.01.026.![]() ![]() ![]() |
[24] |
A. V. Kapustyan, A. V. Pankov and J. Valero, On global attractors of multi-valued semiflows generated by the 3D Benard system, Set-Valued Var. Anal., 20 (2012), 445-465.
doi: 10.1007/s11228-011-0197-5.![]() ![]() ![]() |
[25] |
V. S. Melnik, Multi-valued dynamics of nonlinear infinite dimensional systems, Preprint of NAS of Ukraine, Institute of Cybernetics, Kyiv, 94 (1994).
![]() |
[26] |
V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Analysis, 6 (1998), 83-111.
doi: 10.1023/A:1008608431399.![]() ![]() ![]() |
[27] |
A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530.
![]() ![]() |
[28] |
A. Savostianov and S. Zelik, Recent progress in attractors for quintic wave equations, Mathemaica Bohemica, 139 (2014), 657-665.
![]() ![]() |
[29] |
A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations, Doctoral dissertation, University of Surrey, 2015.
![]() |
[30] |
E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, J. Differential Equations, 265 (2018), 4873-4941.
doi: 10.1016/j.jde.2018.06.022.![]() ![]() ![]() |
[31] |
Y. J. Wang and L. Yang, Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness, Discrete Cont. Dyn. Sys. B, 24 (2019), 1961-1987.
![]() ![]() |
[32] |
Z. J. Yang, N. Feng and T. F. Ma, Global attractor for the generalized double dispersion equation, Nonlinear Analysis, 115 (2015), 103-116.
doi: 10.1016/j.na.2014.12.006.![]() ![]() ![]() |
[33] |
Z. J. Yang, Z. M. Liu and N. Feng, Longtime behavior of the semilinear wave equation with gentle dissipation, Discrete Cont. Dyn. Sys. A, 36 (2016), 6557-6580.
doi: 10.3934/dcds.2016084.![]() ![]() ![]() |
[34] |
Z. J. Yang and Z. M. Liu, Global attractor for a strongly damped wave equation with fully supercritical nonlinearities, Discrete Cont. Dyn. Sys. A, 37 (2017), 2181-2205.
doi: 10.3934/dcds.2017094.![]() ![]() ![]() |
[35] |
M. C. Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561.
doi: 10.1137/140978995.![]() ![]() ![]() |
[36] |
S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Cont. Dyn. Sys., 11 (2004), 351-392.
doi: 10.3934/dcds.2004.11.351.![]() ![]() ![]() |