January  2020, 25(1): 259-286. doi: 10.3934/dcdsb.2019181

Analysis of time-domain Maxwell's equations in biperiodic structures

1. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

2. 

Department of Mathematics, Purdue University, West Lafayette, IN47907, USA

3. 

School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China

* Corresponding author: Gang Bao

Received  January 2019 Revised  March 2019 Published  July 2019

This paper is devoted to the mathematical analysis of the diffraction of an electromagnetic plane wave by a biperiodic structure. The wave propagation is governed by the time-domain Maxwell equations in three dimensions. The method of a compressed coordinate transformation is proposed to reduce equivalently the diffraction problem into an initial-boundary value problem formulated in a bounded domain over a finite time interval. The reduced problem is shown to have a unique weak solution by using the constructive Galerkin method. The stability and a priori estimates with explicit time dependence are established for the weak solution.

Citation: Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181
References:
[1]

B. AlpertL. Greengard and T. Hagstrom, Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296. doi: 10.1006/jcph.2002.7093. Google Scholar

[2]

H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833. doi: 10.1088/0266-5611/11/4/013. Google Scholar

[3]

H. Ammari and G. Bao, Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18. doi: 10.1002/mana.200310026. Google Scholar

[4]

G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169. doi: 10.1137/0732053. Google Scholar

[5]

G. Bao, Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16. doi: 10.1007/s002110050227. Google Scholar

[6]

G. Bao, Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381. doi: 10.1137/S0036139995279408. Google Scholar

[7]

G. BaoD. Dobson and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042. doi: 10.1364/JOSAA.12.001029. Google Scholar

[8]

G. BaoZ. Chen and and H. Wu, Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114. doi: 10.1364/JOSAA.22.001106. Google Scholar

[9]

G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898717594. Google Scholar

[10]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34. doi: 10.1090/S0025-5718-09-02257-1. Google Scholar

[11]

G. Bao and H. Yang, A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682. doi: 10.1137/s0036142998342380. Google Scholar

[12]

G. BaoT. Cui and and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816. doi: 10.1364/OE.22.004799. Google Scholar

[13]

G. Bao and D. Dobson, On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723. doi: 10.1090/S0002-9939-00-05509-X. Google Scholar

[14]

G. Bao and A. Friedman, Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72. doi: 10.1007/BF00390349. Google Scholar

[15]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884. doi: 10.1007/s00205-018-1228-2. Google Scholar

[16]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130. doi: 10.1137/110833555. Google Scholar

[17]

X. Chen and A. Friedman, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507. doi: 10.2307/2001542. Google Scholar

[18]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296. Google Scholar

[19]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826. doi: 10.1137/S0036142902400901. Google Scholar

[20]

D. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439. doi: 10.1051/m2an/1994280404191. Google Scholar

[21]

D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528. doi: 10.1016/0022-247X(92)90312-2. Google Scholar

[22]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651. doi: 10.1090/S0025-5718-1977-0436612-4. Google Scholar

[23]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019. Google Scholar

[24]

L. Fan and P. Monk, Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113. doi: 10.1016/j.jcp.2015.07.067. Google Scholar

[25]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118. doi: 10.1016/j.jde.2016.07.020. Google Scholar

[26]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870. doi: 10.1142/S0218202517500336. Google Scholar

[27]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054. doi: 10.1002/mma.5214. Google Scholar

[28]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972. doi: 10.1137/16M1090326. Google Scholar

[29]

M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297. doi: 10.1137/S0036139993269266. Google Scholar

[30]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106. doi: 10.1017/s0962492900002890. Google Scholar

[31]

X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp. doi: 10.1088/1361-6420/aa76b9. Google Scholar

[32]

A. Lechleiter and D. L. Nguyen., On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184. doi: 10.1051/m2an/2012063. Google Scholar

[33]

P. LiL.-L. Wang and A. Wood, Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699. doi: 10.1137/140989637. Google Scholar

[34]

J.-C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701. doi: 10.1137/0522104. Google Scholar

[35]

R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980. doi: 10.1007/978-3-642-81500-3. Google Scholar

[36]

P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416. Google Scholar

[37]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509. doi: 10.1109/TAP.2008.2005454. Google Scholar

[38]

M. VeysogluR. Shin and J. A. Kong, A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607. doi: 10.1163/156939393X00020. Google Scholar

[39]

B. Wang and L.-L. Wang, On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84. doi: 10.4208/jms.v47n1.14.04. Google Scholar

[40]

L.-L. WangB. Wang and X. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898. doi: 10.1137/110849146. Google Scholar

[41]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607. doi: 10.1137/140969907. Google Scholar

[42]

Y. Wu and Y. Y. Lu, Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451. doi: 10.1364/JOSAA.26.002444. Google Scholar

show all references

References:
[1]

B. AlpertL. Greengard and T. Hagstrom, Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296. doi: 10.1006/jcph.2002.7093. Google Scholar

[2]

H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833. doi: 10.1088/0266-5611/11/4/013. Google Scholar

[3]

H. Ammari and G. Bao, Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18. doi: 10.1002/mana.200310026. Google Scholar

[4]

G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169. doi: 10.1137/0732053. Google Scholar

[5]

G. Bao, Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16. doi: 10.1007/s002110050227. Google Scholar

[6]

G. Bao, Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381. doi: 10.1137/S0036139995279408. Google Scholar

[7]

G. BaoD. Dobson and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042. doi: 10.1364/JOSAA.12.001029. Google Scholar

[8]

G. BaoZ. Chen and and H. Wu, Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114. doi: 10.1364/JOSAA.22.001106. Google Scholar

[9]

G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898717594. Google Scholar

[10]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34. doi: 10.1090/S0025-5718-09-02257-1. Google Scholar

[11]

G. Bao and H. Yang, A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682. doi: 10.1137/s0036142998342380. Google Scholar

[12]

G. BaoT. Cui and and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816. doi: 10.1364/OE.22.004799. Google Scholar

[13]

G. Bao and D. Dobson, On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723. doi: 10.1090/S0002-9939-00-05509-X. Google Scholar

[14]

G. Bao and A. Friedman, Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72. doi: 10.1007/BF00390349. Google Scholar

[15]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884. doi: 10.1007/s00205-018-1228-2. Google Scholar

[16]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130. doi: 10.1137/110833555. Google Scholar

[17]

X. Chen and A. Friedman, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507. doi: 10.2307/2001542. Google Scholar

[18]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296. Google Scholar

[19]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826. doi: 10.1137/S0036142902400901. Google Scholar

[20]

D. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439. doi: 10.1051/m2an/1994280404191. Google Scholar

[21]

D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528. doi: 10.1016/0022-247X(92)90312-2. Google Scholar

[22]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651. doi: 10.1090/S0025-5718-1977-0436612-4. Google Scholar

[23]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019. Google Scholar

[24]

L. Fan and P. Monk, Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113. doi: 10.1016/j.jcp.2015.07.067. Google Scholar

[25]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118. doi: 10.1016/j.jde.2016.07.020. Google Scholar

[26]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870. doi: 10.1142/S0218202517500336. Google Scholar

[27]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054. doi: 10.1002/mma.5214. Google Scholar

[28]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972. doi: 10.1137/16M1090326. Google Scholar

[29]

M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297. doi: 10.1137/S0036139993269266. Google Scholar

[30]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106. doi: 10.1017/s0962492900002890. Google Scholar

[31]

X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp. doi: 10.1088/1361-6420/aa76b9. Google Scholar

[32]

A. Lechleiter and D. L. Nguyen., On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184. doi: 10.1051/m2an/2012063. Google Scholar

[33]

P. LiL.-L. Wang and A. Wood, Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699. doi: 10.1137/140989637. Google Scholar

[34]

J.-C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701. doi: 10.1137/0522104. Google Scholar

[35]

R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980. doi: 10.1007/978-3-642-81500-3. Google Scholar

[36]

P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416. Google Scholar

[37]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509. doi: 10.1109/TAP.2008.2005454. Google Scholar

[38]

M. VeysogluR. Shin and J. A. Kong, A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607. doi: 10.1163/156939393X00020. Google Scholar

[39]

B. Wang and L.-L. Wang, On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84. doi: 10.4208/jms.v47n1.14.04. Google Scholar

[40]

L.-L. WangB. Wang and X. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898. doi: 10.1137/110849146. Google Scholar

[41]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607. doi: 10.1137/140969907. Google Scholar

[42]

Y. Wu and Y. Y. Lu, Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451. doi: 10.1364/JOSAA.26.002444. Google Scholar

Figure 1.  Problem geometry of the time-domain scattering by a biperiodic structure
[1]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[2]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[3]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[4]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[5]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[6]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[7]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[8]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[9]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[10]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[11]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[12]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[13]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[14]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[15]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[16]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[17]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[18]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[19]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[20]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (27)
  • HTML views (252)
  • Cited by (0)

Other articles
by authors

[Back to Top]