January  2020, 25(1): 287-300. doi: 10.3934/dcdsb.2019182

Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

3. 

School of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha, Hunan 410004, China

1Corresponding author

Received  January 2019 Published  July 2019

Fund Project: The research was supported in part by the National Natural Science Foundations of China (Grant Nos. 1161101211 and 61873320), and the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship)

This paper considers stochastic functional differential equations (SFDEs) with infinite delay. The main aim is to establish the LaSalle-type theorems to locate limit sets for this class of SFDEs. In comparison with the existing results, this paper gives more general results under the weaker conditions imposed on the Lyapunov function. These results can be used to discuss the asymptotic stability and asymptotic boundedness for SFDEs with infinite delay. In the end, two examples will be given to illustrate applications of our new results established.

Citation: Ya Wang, Fuke Wu, Xuerong Mao, Enwen Zhu. Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 287-300. doi: 10.3934/dcdsb.2019182
References:
[1]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1974.  Google Scholar

[2] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976.  doi: 10.1007/978-3-642-11079-5_2.  Google Scholar
[3]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[4]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[5] V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations, Academic Press, London, 1986.   Google Scholar
[6]

J. P. LaSalle, Stability theory for ordinary differential equations, Journal of Differential Equations, 4 (1968), 57-65.  doi: 10.1016/0022-0396(68)90048-X.  Google Scholar

[7]

X. Li and X. Mao, The improved lasalle-type theorems for stochastic differential delay equations, Stochastic Analysis and Applications, 30 (2012), 568-589.  doi: 10.1080/07362994.2012.684320.  Google Scholar

[8]

X. Mao, Stochastic versions of the lasalle theorem, Journal of Differential Equations, 153 (1999), 175-195.  doi: 10.1006/jdeq.1998.3552.  Google Scholar

[9]

X. Mao, Lasalle-type theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 236 (1999), 350-369.  doi: 10.1006/jmaa.1999.6435.  Google Scholar

[10]

X. Mao, A note on the lasalle-type theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 268 (2002), 125-142.  doi: 10.1006/jmaa.2001.7803.  Google Scholar

[11]

X. Mao, The lasalle-type theorems for stochastic functional differential equations, Nonlinear Studies, 7 (2000), 307-328.   Google Scholar

[12]

X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood, Chichester, 2008. doi: 10.1016/B978-1-904275-34-3.50013-X.  Google Scholar

[13]

X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stochastic Processes and their Applications, 65 (1996), 233-250.  doi: 10.1016/S0304-4149(96)00109-3.  Google Scholar

[14]

S. E. A. Mohammed, Stochastic Functional Differential Equations, Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[15]

Y. ShenQ. Luo and X. Mao, The improved lasalle-type theorems for stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 318 (2006), 134-154.  doi: 10.1016/j.jmaa.2005.05.026.  Google Scholar

[16]

F. Wei and K. Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications, 331 (2007), 516-531.  doi: 10.1016/j.jmaa.2006.09.020.  Google Scholar

[17]

F. Wu and S. Hu, The lasalle-type theorem for neutral stochastic functional differential equations with infinite delay, Discrete and Continuous Dynamical Systems, Series A, 32 (2012), 1065-1094.  doi: 10.3934/dcds.2012.32.1065.  Google Scholar

[18]

F. WuG. Yin and H. Mei, Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, markov properties, and ergodicity, Journal of Differential Equations, 262 (2017), 1226-1252.  doi: 10.1016/j.jde.2016.10.006.  Google Scholar

show all references

References:
[1]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1974.  Google Scholar

[2] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976.  doi: 10.1007/978-3-642-11079-5_2.  Google Scholar
[3]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[4]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[5] V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations, Academic Press, London, 1986.   Google Scholar
[6]

J. P. LaSalle, Stability theory for ordinary differential equations, Journal of Differential Equations, 4 (1968), 57-65.  doi: 10.1016/0022-0396(68)90048-X.  Google Scholar

[7]

X. Li and X. Mao, The improved lasalle-type theorems for stochastic differential delay equations, Stochastic Analysis and Applications, 30 (2012), 568-589.  doi: 10.1080/07362994.2012.684320.  Google Scholar

[8]

X. Mao, Stochastic versions of the lasalle theorem, Journal of Differential Equations, 153 (1999), 175-195.  doi: 10.1006/jdeq.1998.3552.  Google Scholar

[9]

X. Mao, Lasalle-type theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 236 (1999), 350-369.  doi: 10.1006/jmaa.1999.6435.  Google Scholar

[10]

X. Mao, A note on the lasalle-type theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 268 (2002), 125-142.  doi: 10.1006/jmaa.2001.7803.  Google Scholar

[11]

X. Mao, The lasalle-type theorems for stochastic functional differential equations, Nonlinear Studies, 7 (2000), 307-328.   Google Scholar

[12]

X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood, Chichester, 2008. doi: 10.1016/B978-1-904275-34-3.50013-X.  Google Scholar

[13]

X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stochastic Processes and their Applications, 65 (1996), 233-250.  doi: 10.1016/S0304-4149(96)00109-3.  Google Scholar

[14]

S. E. A. Mohammed, Stochastic Functional Differential Equations, Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[15]

Y. ShenQ. Luo and X. Mao, The improved lasalle-type theorems for stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 318 (2006), 134-154.  doi: 10.1016/j.jmaa.2005.05.026.  Google Scholar

[16]

F. Wei and K. Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications, 331 (2007), 516-531.  doi: 10.1016/j.jmaa.2006.09.020.  Google Scholar

[17]

F. Wu and S. Hu, The lasalle-type theorem for neutral stochastic functional differential equations with infinite delay, Discrete and Continuous Dynamical Systems, Series A, 32 (2012), 1065-1094.  doi: 10.3934/dcds.2012.32.1065.  Google Scholar

[18]

F. WuG. Yin and H. Mei, Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, markov properties, and ergodicity, Journal of Differential Equations, 262 (2017), 1226-1252.  doi: 10.1016/j.jde.2016.10.006.  Google Scholar

[1]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[2]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[3]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[4]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[5]

Roman Srzednicki. A theorem on chaotic dynamics and its application to differential delay equations. Conference Publications, 2001, 2001 (Special) : 362-365. doi: 10.3934/proc.2001.2001.362

[6]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[7]

Yongxin Jiang, Can Zhang, Zhaosheng Feng. A Perron-type theorem for nonautonomous differential equations with different growth rates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 995-1008. doi: 10.3934/dcdss.2017052

[8]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[9]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[10]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[11]

Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697

[12]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[13]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[14]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[15]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[16]

Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845

[17]

Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108

[18]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[19]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[20]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (98)
  • HTML views (298)
  • Cited by (0)

Other articles
by authors

[Back to Top]