-
Previous Article
Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution
- DCDS-B Home
- This Issue
-
Next Article
Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay
Pullback exponential attractors for differential equations with variable delays
a. | Department of Mathematics, University of Sfax, Route de la Soukra km 4, Sfax 3038, Tunisia |
b. | Department of Statistics and Operations Research, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia |
c. | IMAPP Mathematics, Radboud Universiteit Nijmegen, PO Box 9010, 6500GL Nijmegen, The Netherlands |
We show how recent existence results for pullback exponential attractors can be applied to non-autonomous delay differential equations with time-varying delays. Moreover, we derive explicit estimates for the fractal dimension of the attractors.
As a special case, autonomous delay differential equations are also discussed, where our results improve previously obtained bounds for the fractal dimension of exponential attractors.
References:
[1] |
T. Caraballo, P. Marin-Rubio and J. Valero,
Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[2] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[3] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[4] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.
doi: 10.3934/cpaa.2013.12.3047. |
[5] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.
doi: 10.3934/cpaa.2014.13.1141. |
[6] |
R. Czaja and M. A. Efendiev,
Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.
doi: 10.1016/j.jmaa.2011.03.053. |
[7] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994. |
[8] |
D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators, Cambridge University Press, New York, 1996.
doi: 10.1017/CBO9780511662201.![]() ![]() ![]() |
[9] |
M. A. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $ \mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[10] |
S. Habibi,
Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.
doi: 10.2478/s12175-014-0272-0. |
[11] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[12] |
J. A. Langa, A. Miranville and J. Real,
Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.
doi: 10.3934/dcds.2010.26.1329. |
[13] |
D. Pražák,
On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.
doi: 10.2478/s11533-006-0024-7. |
[14] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, 57, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[15] |
S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, PhD thesis, Technische Universität München, Germany (2012). |
show all references
References:
[1] |
T. Caraballo, P. Marin-Rubio and J. Valero,
Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[2] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[3] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[4] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.
doi: 10.3934/cpaa.2013.12.3047. |
[5] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.
doi: 10.3934/cpaa.2014.13.1141. |
[6] |
R. Czaja and M. A. Efendiev,
Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748-765.
doi: 10.1016/j.jmaa.2011.03.053. |
[7] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994. |
[8] |
D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators, Cambridge University Press, New York, 1996.
doi: 10.1017/CBO9780511662201.![]() ![]() ![]() |
[9] |
M. A. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $ \mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[10] |
S. Habibi,
Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.
doi: 10.2478/s12175-014-0272-0. |
[11] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[12] |
J. A. Langa, A. Miranville and J. Real,
Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.
doi: 10.3934/dcds.2010.26.1329. |
[13] |
D. Pražák,
On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.
doi: 10.2478/s11533-006-0024-7. |
[14] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, 57, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[15] |
S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, PhD thesis, Technische Universität München, Germany (2012). |
[1] |
Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543 |
[2] |
Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068 |
[3] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703 |
[4] |
Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214 |
[5] |
Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036 |
[6] |
Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172 |
[7] |
Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021276 |
[8] |
Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635 |
[9] |
Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure and Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885 |
[10] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[11] |
Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120 |
[12] |
Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 |
[13] |
Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111 |
[14] |
Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221 |
[15] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[16] |
T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037 |
[17] |
Na Lei, Shengfan Zhou. Upper semicontinuity of pullback attractors for non-autonomous lattice systems under singular perturbations. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 73-108. doi: 10.3934/dcds.2021108 |
[18] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[19] |
Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203 |
[20] |
Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]