\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multi-scale analysis for highly anisotropic parabolic problems

  • * Corresponding author: Mihaï Bostan

    * Corresponding author: Mihaï Bostan
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We focus on the asymptotic behavior of strongly anisotropic parabolic problems. We concentrate on heat equations, whose diffusion matrix fields have disparate eigenvalues. We establish strong convergence results toward a profile. Under suitable smoothness hypotheses, by introducing an appropriate corrector term, we estimate the convergence rate. The arguments rely on two-scale analysis, based on average operators with respect to unitary groups.

    Mathematics Subject Classification: Primary: 35K05; Secondary: 37A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. Agelas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, 346 (2008), 1007-1012.  doi: 10.1016/j.crma.2008.07.015.
    [2] D. S. BalsanaD. A. Tilley and C. J. Howk, Simulating anisotropic thermal conduction in supernova remnants-Ⅰ., Numerical methods, Monthly Notices of Royal Astronomical Society, 386 (2008), 627-641. 
    [3] T. BlancM. Bostan and F. Boyer, Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4637-4676.  doi: 10.3934/dcds.2017200.
    [4] M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.  doi: 10.1016/j.jde.2010.07.010.
    [5] M. Bostan, Strongly anisotropic diffusion problems; asymptotic analysis, J. Differential Equations, 256 (2016), 1043-1092.  doi: 10.1016/j.jde.2013.10.008.
    [6] M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188.  doi: 10.1137/15M1033034.
    [7] S. I. Braginskii, Transport Processes in a Plasma, M.A. Leontovich, Reviews of Plasma Physics, Consultants Bureau, New York, 1965.
    [8] C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, 2009. doi: 10.1007/978-0-387-09819-7.
    [9] R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique Pour Les Sciences et Les Techniques, vol. 8, Masson, 1988.
    [10] P. DegondF. Deluzet and C. Negulescu, An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul., 8 (2009/10), 645-666.  doi: 10.1137/090754200.
    [11] R. EymardT. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.  doi: 10.1093/imanum/drn084.
    [12] F. FilbetC. Negulescu and C. Yang, Numerical study of a nonlinear heat equation for plasma physics, Int. J. Comput. Math., 89 (2012), 1060-1082.  doi: 10.1080/00207160.2012.679732.
    [13] E. FreireA. Gasull and A. Guillamon, A characterization of isochronous centers in terms of symmetries, Rev. Mat. Iberoamericana, 20 (2004), 205-222.  doi: 10.4171/RMI/386.
    [14] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. Ⅰ, Springer Berlin Heidelberg, 1972.
    [15] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.  doi: 10.1109/34.56205.
    [16] J. Quah and D. Margetis, Anisotropic diffusion in continuum relaxation of stepped crystal surfaces, J. Phys. A, 41 (2008), 235004, 18pp. doi: 10.1088/1751-8113/41/23/235004.
    [17] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. Ⅰ, Functional Analysis, Academic Press, 1980.
    [18] M. Sabatini, Characterizing isochronous centers by Lie brackets, Differential Equations Dyn. Syst., 5 (1997), 91-99. 
    [19] P. Sharma and G. W. Hammett, A fast semi-implicit method for anisotropic diffusion, J. Comput. Phys., 230 (2011), 4899-4909.  doi: 10.1016/j.jcp.2011.03.009.
    [20] P. Sharma and G. W. Hammett, Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), 123-142.  doi: 10.1016/j.jcp.2007.07.026.
    [21] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart 1998.
  • 加载中
SHARE

Article Metrics

HTML views(1601) PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return