We focus on the asymptotic behavior of strongly anisotropic parabolic problems. We concentrate on heat equations, whose diffusion matrix fields have disparate eigenvalues. We establish strong convergence results toward a profile. Under suitable smoothness hypotheses, by introducing an appropriate corrector term, we estimate the convergence rate. The arguments rely on two-scale analysis, based on average operators with respect to unitary groups.
Citation: |
[1] | L. Agelas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, 346 (2008), 1007-1012. doi: 10.1016/j.crma.2008.07.015. |
[2] | D. S. Balsana, D. A. Tilley and C. J. Howk, Simulating anisotropic thermal conduction in supernova remnants-Ⅰ., Numerical methods, Monthly Notices of Royal Astronomical Society, 386 (2008), 627-641. |
[3] | T. Blanc, M. Bostan and F. Boyer, Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4637-4676. doi: 10.3934/dcds.2017200. |
[4] | M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663. doi: 10.1016/j.jde.2010.07.010. |
[5] | M. Bostan, Strongly anisotropic diffusion problems; asymptotic analysis, J. Differential Equations, 256 (2016), 1043-1092. doi: 10.1016/j.jde.2013.10.008. |
[6] | M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188. doi: 10.1137/15M1033034. |
[7] | S. I. Braginskii, Transport Processes in a Plasma, M.A. Leontovich, Reviews of Plasma Physics, Consultants Bureau, New York, 1965. |
[8] | C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, 2009. doi: 10.1007/978-0-387-09819-7. |
[9] | R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique Pour Les Sciences et Les Techniques, vol. 8, Masson, 1988. |
[10] | P. Degond, F. Deluzet and C. Negulescu, An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul., 8 (2009/10), 645-666. doi: 10.1137/090754200. |
[11] | R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043. doi: 10.1093/imanum/drn084. |
[12] | F. Filbet, C. Negulescu and C. Yang, Numerical study of a nonlinear heat equation for plasma physics, Int. J. Comput. Math., 89 (2012), 1060-1082. doi: 10.1080/00207160.2012.679732. |
[13] | E. Freire, A. Gasull and A. Guillamon, A characterization of isochronous centers in terms of symmetries, Rev. Mat. Iberoamericana, 20 (2004), 205-222. doi: 10.4171/RMI/386. |
[14] | J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. Ⅰ, Springer Berlin Heidelberg, 1972. |
[15] | P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639. doi: 10.1109/34.56205. |
[16] | J. Quah and D. Margetis, Anisotropic diffusion in continuum relaxation of stepped crystal surfaces, J. Phys. A, 41 (2008), 235004, 18pp. doi: 10.1088/1751-8113/41/23/235004. |
[17] | M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. Ⅰ, Functional Analysis, Academic Press, 1980. |
[18] | M. Sabatini, Characterizing isochronous centers by Lie brackets, Differential Equations Dyn. Syst., 5 (1997), 91-99. |
[19] | P. Sharma and G. W. Hammett, A fast semi-implicit method for anisotropic diffusion, J. Comput. Phys., 230 (2011), 4899-4909. doi: 10.1016/j.jcp.2011.03.009. |
[20] | P. Sharma and G. W. Hammett, Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), 123-142. doi: 10.1016/j.jcp.2007.07.026. |
[21] | J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart 1998. |