
-
Previous Article
A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement
- DCDS-B Home
- This Issue
-
Next Article
Multi-scale analysis for highly anisotropic parabolic problems
Bi-center problem and Hopf cyclicity of a Cubic Liénard system
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China |
In this paper we investigate the bi-center problem and the total Hopf cyclicity of two center-foci for the general cubic Liénard system which has three distinct equilibria and is equivalent to the general Liénard equation with cubic damping and restoring force. The location of these three equilibria is arbitrary, specially without any kind of symmetry. We find the necessary and sufficient condition for the existence of bi-centers and prove that there is no case of a unique center. On the Hopf cyclicity we prove that there are totally $ 9 $ possible styles of small amplitude limit cycles surrounding these two center-foci and $ 6 $ styles of them can occur, from which the total Hopf cyclicity is no more than $ 4 $ and no less than $ 2 $.
References:
[1] |
N. N. Bautin,
On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center, Matematicheskii Sbornik N.S., 30 (1952), 181-196.
|
[2] |
X. Chen, J. Llibre, Z. Wang and W. Zhang,
Restricted independence in displacement function for better estimation of cyclicity, J. Differential Equations, 262 (2017), 5773-5791.
doi: 10.1016/j.jde.2017.02.015. |
[3] |
L. Chen, Z. Lu and D. Wang,
A class of cubic systems with two centers or two foci, J. Math. Anal. Appl., 242 (2000), 154-163.
doi: 10.1006/jmaa.1999.6630. |
[4] |
S. -N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. |
[5] |
C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkh$\ddot{a}$user Verlag, Basel, 2007. |
[6] |
C. Christopher and S. Lynch,
Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12 (1999), 1099-1112.
doi: 10.1088/0951-7715/12/4/321. |
[7] |
F. Dumortier, C. Li and Z. Zhang,
Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops, J. Differential Equations, 139 (1997), 146-193.
doi: 10.1006/jdeq.1997.3285. |
[8] |
F. Dumortier, J. Llibre and J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. |
[9] |
I. A. García, J. Llibre and S. Maza,
The Hopf cyclicity of the centers of a class of quintic polynomial vector fields, J. Differential Equations, 258 (2015), 1990-2009.
doi: 10.1016/j.jde.2014.11.018. |
[10] |
J. Giné,
Center conditions for polynomial Liénard systems, Qual. Theory Dyn. Syst., 16 (2017), 119-126.
doi: 10.1007/s12346-016-0202-3. |
[11] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[12] |
C. Li,
Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurcation & Chaos, 13 (2003), 47-106.
doi: 10.1142/S0218127403006352. |
[13] |
C. Liu,
The cyclicity of period annuli of a class of quadratic reversible systems with two centers, J. Differential Equations, 252 (2012), 5260-5273.
doi: 10.1016/j.jde.2012.02.005. |
[14] |
Y. Liu and W. Huang,
A cubic system with twelve small amplitude limit cycles, Bull. Sci. math., 129 (2005), 83-98.
doi: 10.1016/j.bulsci.2004.05.004. |
[15] |
Y. Liu and J. Li, Some Classical Problems for Planar Vector Fields(in Chinese), Science Press, Beijing, 2010. Google Scholar |
[16] |
Y. Liu and J. Li,
Complete study on a bi-center problem for the Z$_2$-equivariant cubic vector fields, Acta Math. Sin. English Series, 27 (2011), 1379-1394.
doi: 10.1007/s10114-011-8412-8. |
[17] |
L. Peng, Z. Feng and C. Liu,
Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers, Disc. Contin. Dyn. Syst., 34 (2014), 4807-4826.
doi: 10.3934/dcds.2014.34.4807. |
[18] |
V. G. Romanovski, W. Fernandes and R. Oliveira,
Bi-center problem for some classes of Z$_2$-equivariant systems, J. Comput. Appl. Math., 320 (2017), 61-75.
doi: 10.1016/j.cam.2017.02.003. |
[19] |
V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkh$\ddot{a}$user Verlag, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[20] |
Y. Tian and M. Han,
Hopf bifurcation for two types of Liénard systems, J. Differential Equations, 251 (2011), 834-859.
doi: 10.1016/j.jde.2011.05.029. |
[21] |
Y. Wu, G. Chen and X. Yang,
Kukles system with two fine foci, Ann. of Diff. Eqs., 15 (1999), 422-437.
|
[22] |
P. Yu and M. Han,
Twelve limit cycles in a cubic case of the 16th Hilbert problem, Int. J. Bifurcation & Chaos, 15 (2005), 2191-2205.
doi: 10.1142/S0218127405013289. |
[23] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992. |
[24] |
Z. Zhang, C. Li, Z. Zheng and W. Li, Elementary Theory of Bifurcations of Vector Fields(in Chinese), Higher Education Press, Beijing, 1997. Google Scholar |
[25] |
H. Żoładek,
Eleven small limit cycles in a cubic vector field, Nonlinearity, 8 (1995), 843-860.
doi: 10.1088/0951-7715/8/5/011. |
show all references
References:
[1] |
N. N. Bautin,
On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center, Matematicheskii Sbornik N.S., 30 (1952), 181-196.
|
[2] |
X. Chen, J. Llibre, Z. Wang and W. Zhang,
Restricted independence in displacement function for better estimation of cyclicity, J. Differential Equations, 262 (2017), 5773-5791.
doi: 10.1016/j.jde.2017.02.015. |
[3] |
L. Chen, Z. Lu and D. Wang,
A class of cubic systems with two centers or two foci, J. Math. Anal. Appl., 242 (2000), 154-163.
doi: 10.1006/jmaa.1999.6630. |
[4] |
S. -N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. |
[5] |
C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkh$\ddot{a}$user Verlag, Basel, 2007. |
[6] |
C. Christopher and S. Lynch,
Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12 (1999), 1099-1112.
doi: 10.1088/0951-7715/12/4/321. |
[7] |
F. Dumortier, C. Li and Z. Zhang,
Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops, J. Differential Equations, 139 (1997), 146-193.
doi: 10.1006/jdeq.1997.3285. |
[8] |
F. Dumortier, J. Llibre and J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. |
[9] |
I. A. García, J. Llibre and S. Maza,
The Hopf cyclicity of the centers of a class of quintic polynomial vector fields, J. Differential Equations, 258 (2015), 1990-2009.
doi: 10.1016/j.jde.2014.11.018. |
[10] |
J. Giné,
Center conditions for polynomial Liénard systems, Qual. Theory Dyn. Syst., 16 (2017), 119-126.
doi: 10.1007/s12346-016-0202-3. |
[11] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[12] |
C. Li,
Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurcation & Chaos, 13 (2003), 47-106.
doi: 10.1142/S0218127403006352. |
[13] |
C. Liu,
The cyclicity of period annuli of a class of quadratic reversible systems with two centers, J. Differential Equations, 252 (2012), 5260-5273.
doi: 10.1016/j.jde.2012.02.005. |
[14] |
Y. Liu and W. Huang,
A cubic system with twelve small amplitude limit cycles, Bull. Sci. math., 129 (2005), 83-98.
doi: 10.1016/j.bulsci.2004.05.004. |
[15] |
Y. Liu and J. Li, Some Classical Problems for Planar Vector Fields(in Chinese), Science Press, Beijing, 2010. Google Scholar |
[16] |
Y. Liu and J. Li,
Complete study on a bi-center problem for the Z$_2$-equivariant cubic vector fields, Acta Math. Sin. English Series, 27 (2011), 1379-1394.
doi: 10.1007/s10114-011-8412-8. |
[17] |
L. Peng, Z. Feng and C. Liu,
Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers, Disc. Contin. Dyn. Syst., 34 (2014), 4807-4826.
doi: 10.3934/dcds.2014.34.4807. |
[18] |
V. G. Romanovski, W. Fernandes and R. Oliveira,
Bi-center problem for some classes of Z$_2$-equivariant systems, J. Comput. Appl. Math., 320 (2017), 61-75.
doi: 10.1016/j.cam.2017.02.003. |
[19] |
V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkh$\ddot{a}$user Verlag, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[20] |
Y. Tian and M. Han,
Hopf bifurcation for two types of Liénard systems, J. Differential Equations, 251 (2011), 834-859.
doi: 10.1016/j.jde.2011.05.029. |
[21] |
Y. Wu, G. Chen and X. Yang,
Kukles system with two fine foci, Ann. of Diff. Eqs., 15 (1999), 422-437.
|
[22] |
P. Yu and M. Han,
Twelve limit cycles in a cubic case of the 16th Hilbert problem, Int. J. Bifurcation & Chaos, 15 (2005), 2191-2205.
doi: 10.1142/S0218127405013289. |
[23] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992. |
[24] |
Z. Zhang, C. Li, Z. Zheng and W. Li, Elementary Theory of Bifurcations of Vector Fields(in Chinese), Higher Education Press, Beijing, 1997. Google Scholar |
[25] |
H. Żoładek,
Eleven small limit cycles in a cubic vector field, Nonlinearity, 8 (1995), 843-860.
doi: 10.1088/0951-7715/8/5/011. |

[1] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[2] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[3] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[4] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[5] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[6] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[7] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[8] |
Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020177 |
[9] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[10] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[11] |
Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007 |
[12] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[13] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[14] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[15] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[16] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[17] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[18] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[19] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[20] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]