doi: 10.3934/dcdsb.2019191

Derivation of cable equation by multiscale analysis for a model of myelinated axons

1. 

Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700, Peñalolén, Santiago, Chile

2. 

Department of Electrical Engineering, Mathematics and Science, University of Gävle, SE-801 76 Gävle, Sweden

3. 

B. Verkin Institute for Low Temperature Physics and Engineering of NASU, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Received  September 2018 Revised  March 2019 Published  September 2019

Fund Project: This research was supported by the Swedish Foundation for International Cooperation in Research and Higher Education STINT (research grant IB 2017-7370) and Chile Fondecyt Regular 1171491

We derive a one-dimensional cable model for the electric potential propagation along an axon. Since the typical thickness of an axon is much smaller than its length, and the myelin sheath is distributed periodically along the neuron, we simplify the problem geometry to a thin cylinder with alternating myelinated and unmyelinated parts. Both the microstructure period and the cylinder thickness are assumed to be of order $ \varepsilon $, a small positive parameter. Assuming a nonzero conductivity of the myelin sheath, we find a critical scaling with respect to $ \varepsilon $ which leads to the appearance of an additional potential in the homogenized nonlinear cable equation. This potential contains information about the geometry of the myelin sheath in the original three-dimensional model.

Citation: Carlos Jerez-Hanckes, Irina Pettersson, Volodymyr Rybalko. Derivation of cable equation by multiscale analysis for a model of myelinated axons. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019191
References:
[1]

G. Allaire, Commissariat 'a L'energie Atomique, Alain Damlamian, and Ulrich Hornung, Two-scale convergence on periodic surfaces and applications, Mathematical Modelling of Flow through Porous Media, 1995. Google Scholar

[2]

M. AmarD. AndreucciP. Bisegna and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, 29 (2006), 767-787.  doi: 10.1002/mma.709.  Google Scholar

[3]

M. AmarD. AndreucciP. BisegnaR. Gianni and et al., A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: the nonlinear case, Differential and Integral Equations, 26 (2013), 885-912.   Google Scholar

[4]

M. Amar, D. Andreucci and R. Gianni, Asymptotic decay under nonlinear and noncoercive dissipative effects for electrical conduction in biological tissues, Nonlinear Differ. Equ. Appl., 23 (2016), Art. 48, 24 pp. doi: 10.1007/s00030-016-0396-8.  Google Scholar

[5]

H. AmmariL. GiovangigliH. KwonJ. K. Seo and T. Wintz, Spectroscopic conductivity imaging of a cell culture, Asymptotic Analysis, 100 (2016), 87-109.  doi: 10.3233/ASY-161387.  Google Scholar

[6]

H. AmmariT. Widlak and W. Zhang, Towards monitoring critical microscopic parameters for electropermeabilization, Quart. Appl. Math., 75 (2017), 1-17.  doi: 10.1090/qam/1449.  Google Scholar

[7]

T. ArbogastJ. Douglas Jr and and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990), 823-836.  doi: 10.1137/0521046.  Google Scholar

[8]

P. J. Basser, Cable equation for a myelinated axon derived from its microstructure, Medical & Biological Engineering & Computing, 31 (1993), S87–S92. doi: 10.1007/BF02446655.  Google Scholar

[9]

P. J. Basser and B. J. Roth, New currents in electrical stimulation of excitable tissues, Annu. Rev. Biomed. Eng., 2 (2000), 377-397.  doi: 10.1146/annurev.bioeng.2.1.377.  Google Scholar

[10]

C. Bollini and F. Cacheiro, Peripheral nerve stimulation, Tech. Reg. Anesth. Pain Manag., 10 (2006), 79-88.  doi: 10.1053/j.trap.2006.07.007.  Google Scholar

[11]

S. O. ChoiY. C. KimJ. W. LeeJ. H. ParkM. R. Prausnitz and M. G. Allen, Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array, Small, 10 (2012), 1081-1091.  doi: 10.1002/smll.201101747.  Google Scholar

[12]

P. Colli-Franzone, L. F. Pavarino and S. Scacchi, Mathematical and numerical methods for reaction-diffusion models in electrocardiology, In Davide Ambrosi, Alfio Quarteroni, and Gianluigi Rozza, editors, Modeling of Physiological Flows, Springer Milan, Milano, 2012,107–141. Google Scholar

[13]

S. Doi, J. Inoue, Z. Pan and K. Tsumoto, Computational Electrophysiology, volume 2., Tokyo, Japan: Springer Series, A First Course in On Silico Medicine, 2010. doi: 10.1007/978-4-431-53862-2.  Google Scholar

[14]

F. Henríquez and C. Jerez-Hanckes, Multiple traces formulation and semi-implicit scheme for modelling biological cells under electrical stimulation, ESAIM: M2AN, 52 (2018), 659-703.  doi: 10.1051/m2an/2018019.  Google Scholar

[15]

F. HenríquezC. Jerez-Hanckes and F. Altermatt, Boundary integral formulation and semi-implicit scheme coupling for modeling cells under electrical stimulation, Numer. Math., 136 (2016), 101-145.  doi: 10.1007/s00211-016-0835-9.  Google Scholar

[16]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117 (1952), 500. Google Scholar

[17]

J. Keener and J. Sneyd, Mathematical Physiology I: Cellular Physiology, Springer-Verlag, New York, 1998.  Google Scholar

[18]

E. Y. Khruslov, Homogenized models of strongly inhomogeneous media, In Proceedings of the International Congress of Mathematicians, Springer, 1995, 1270–1278.  Google Scholar

[19]

A. N. KolmogorovI. G. Petrovsky and N. S. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem, Bull. Moscow State Univ. Ser. A: Math. Mech, 1 (1937), 1-25.   Google Scholar

[20]

D. C. Li and Q. Li, Electrical stimulation of cortical neurons promotes oligodendrocyte development and remyelination in the injured spinal, Neural Regeneration Research, 12 (2017), 1613-1615.  doi: 10.4103/1673-5374.217330.  Google Scholar

[21]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkh"auser/Springer Basel AG, Basel, 1995.  Google Scholar

[22]

V. A. Marchenko and E. Y. Khruslov, Boundary-value problems with fine-grained boundary, Matematicheskii Sbornik, 65 (1964), 458-472.   Google Scholar

[23]

H. Matano and Y. Mori, Global existence and uniqueness of a three-dimensional model of cellular electrophysiology, Discrete Contin. Dyn. Syst, 29 (2011), 1573-1636.  doi: 10.3934/dcds.2011.29.1573.  Google Scholar

[24]

V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, 1985. doi: 10.1007/978-3-662-09922-3.  Google Scholar

[25]

C. C. McIntyreA. G. Richardson and W. M. Grill, Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle, Journal of Neurophysiology, 87 (2002), 995-1006.  doi: 10.1152/jn.00353.2001.  Google Scholar

[26]

H. Meffin, B. Tahayori, E. N. Sergeev, I. M. Y. Mareels, D. B. Grayden and A. N. Burkitt, Modelling extracellular electrical stimulation: Ⅲ. derivation and interpretation of neural tissue equations, Journal of Neural Engineering, 11 (2014), 065004. doi: 10.1088/1741-2560/11/6/065004.  Google Scholar

[27]

C. Meunier and B. Lamotte d'Incamps, Extending cable theory to heterogeneous dendrites, Neural Computation, 20 (2008), 1732-1775.  doi: 10.1162/neco.2008.12-06-425.  Google Scholar

[28]

L. M. MirM. F. BureauJ. GehlR. RangaraD. RouyJ. M. CaillaudP. DelaereD. BranellecB. Schwartz and D. Scherman, High-efficiency gene transfer into skeletal muscle mediated by electric pulses, Proc. Nat. Acad. Sci. USA., 96 (1999), 4262-4267.  doi: 10.1073/pnas.96.8.4262.  Google Scholar

[29]

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues, Critical Reviews in Biomedical Engineering, 21 (1993), 137-199.   Google Scholar

[30]

M. Neuss-Radu, Some extensions of two-scale convergence, Comptes Rendus de l'Académie des Sciences. Série 1, Mathématique, 322 (1996), 899–904.  Google Scholar

[31]

P. D. O'BrienL. M. HinderB. C. Callaghan and E. L. Feldman, Neurological consequences of obesity, The Lancet Neurology, 16 (2017), 465-477.  doi: 10.1016/S1474-4422(17)30084-4.  Google Scholar

[32]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[33]

M. PennacchioG. Savaré and P. C. Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM Journal on Mathematical Analysis, 37 (2005), 1333-1370.  doi: 10.1137/040615249.  Google Scholar

[34]

I. Pettersson, Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary, Differential Equations & Applications, 9 (2017), 393-412.  doi: 10.7153/dea-2017-09-28.  Google Scholar

[35]

C. Pham-DangO. KickT. ColletF. Gouin and M. Pinaud, Continuous peripheral nerve blocks with stimulating catheters, Reg. Anesth. Pain Med., 28 (2003), 83-88.   Google Scholar

[36]

R. Plonsey and R. C. Barr, Bioelectricity: A Quantitative Approach, Springer, Boston, MA, 2007.  Google Scholar

[37]

W. Rall, Time constants and electrotonic length of membrane cylinders and neurons, Biophysical Journal, 9 (1969), 1483-1508.  doi: 10.1016/S0006-3495(69)86467-2.  Google Scholar

[38]

F. Rattay, Electrical Nerve Stimulation. Theory, Experiments and Applications, Vienna, Austria: Springer–Verlag, 1990. Google Scholar

[39]

J. E. Riggs, The aging population, Neurologic Clinics, 16 (1998), 555-560.  doi: 10.1016/S0733-8619(05)70079-7.  Google Scholar

[40]

J. TeissiéN. EynardB. Gabriel and M. P. Rols, Electropermeabilization of cell membranes, Adv. Drug. Del. Rev, 35 (1999), 3-19.   Google Scholar

[41]

V. Zhikov, On an extension and an application of the two-scale convergence method, Sb. Math., 191 (2000), 973-1014.  doi: 10.1070/SM2000v191n07ABEH000491.  Google Scholar

show all references

References:
[1]

G. Allaire, Commissariat 'a L'energie Atomique, Alain Damlamian, and Ulrich Hornung, Two-scale convergence on periodic surfaces and applications, Mathematical Modelling of Flow through Porous Media, 1995. Google Scholar

[2]

M. AmarD. AndreucciP. Bisegna and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, 29 (2006), 767-787.  doi: 10.1002/mma.709.  Google Scholar

[3]

M. AmarD. AndreucciP. BisegnaR. Gianni and et al., A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: the nonlinear case, Differential and Integral Equations, 26 (2013), 885-912.   Google Scholar

[4]

M. Amar, D. Andreucci and R. Gianni, Asymptotic decay under nonlinear and noncoercive dissipative effects for electrical conduction in biological tissues, Nonlinear Differ. Equ. Appl., 23 (2016), Art. 48, 24 pp. doi: 10.1007/s00030-016-0396-8.  Google Scholar

[5]

H. AmmariL. GiovangigliH. KwonJ. K. Seo and T. Wintz, Spectroscopic conductivity imaging of a cell culture, Asymptotic Analysis, 100 (2016), 87-109.  doi: 10.3233/ASY-161387.  Google Scholar

[6]

H. AmmariT. Widlak and W. Zhang, Towards monitoring critical microscopic parameters for electropermeabilization, Quart. Appl. Math., 75 (2017), 1-17.  doi: 10.1090/qam/1449.  Google Scholar

[7]

T. ArbogastJ. Douglas Jr and and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990), 823-836.  doi: 10.1137/0521046.  Google Scholar

[8]

P. J. Basser, Cable equation for a myelinated axon derived from its microstructure, Medical & Biological Engineering & Computing, 31 (1993), S87–S92. doi: 10.1007/BF02446655.  Google Scholar

[9]

P. J. Basser and B. J. Roth, New currents in electrical stimulation of excitable tissues, Annu. Rev. Biomed. Eng., 2 (2000), 377-397.  doi: 10.1146/annurev.bioeng.2.1.377.  Google Scholar

[10]

C. Bollini and F. Cacheiro, Peripheral nerve stimulation, Tech. Reg. Anesth. Pain Manag., 10 (2006), 79-88.  doi: 10.1053/j.trap.2006.07.007.  Google Scholar

[11]

S. O. ChoiY. C. KimJ. W. LeeJ. H. ParkM. R. Prausnitz and M. G. Allen, Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array, Small, 10 (2012), 1081-1091.  doi: 10.1002/smll.201101747.  Google Scholar

[12]

P. Colli-Franzone, L. F. Pavarino and S. Scacchi, Mathematical and numerical methods for reaction-diffusion models in electrocardiology, In Davide Ambrosi, Alfio Quarteroni, and Gianluigi Rozza, editors, Modeling of Physiological Flows, Springer Milan, Milano, 2012,107–141. Google Scholar

[13]

S. Doi, J. Inoue, Z. Pan and K. Tsumoto, Computational Electrophysiology, volume 2., Tokyo, Japan: Springer Series, A First Course in On Silico Medicine, 2010. doi: 10.1007/978-4-431-53862-2.  Google Scholar

[14]

F. Henríquez and C. Jerez-Hanckes, Multiple traces formulation and semi-implicit scheme for modelling biological cells under electrical stimulation, ESAIM: M2AN, 52 (2018), 659-703.  doi: 10.1051/m2an/2018019.  Google Scholar

[15]

F. HenríquezC. Jerez-Hanckes and F. Altermatt, Boundary integral formulation and semi-implicit scheme coupling for modeling cells under electrical stimulation, Numer. Math., 136 (2016), 101-145.  doi: 10.1007/s00211-016-0835-9.  Google Scholar

[16]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117 (1952), 500. Google Scholar

[17]

J. Keener and J. Sneyd, Mathematical Physiology I: Cellular Physiology, Springer-Verlag, New York, 1998.  Google Scholar

[18]

E. Y. Khruslov, Homogenized models of strongly inhomogeneous media, In Proceedings of the International Congress of Mathematicians, Springer, 1995, 1270–1278.  Google Scholar

[19]

A. N. KolmogorovI. G. Petrovsky and N. S. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem, Bull. Moscow State Univ. Ser. A: Math. Mech, 1 (1937), 1-25.   Google Scholar

[20]

D. C. Li and Q. Li, Electrical stimulation of cortical neurons promotes oligodendrocyte development and remyelination in the injured spinal, Neural Regeneration Research, 12 (2017), 1613-1615.  doi: 10.4103/1673-5374.217330.  Google Scholar

[21]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkh"auser/Springer Basel AG, Basel, 1995.  Google Scholar

[22]

V. A. Marchenko and E. Y. Khruslov, Boundary-value problems with fine-grained boundary, Matematicheskii Sbornik, 65 (1964), 458-472.   Google Scholar

[23]

H. Matano and Y. Mori, Global existence and uniqueness of a three-dimensional model of cellular electrophysiology, Discrete Contin. Dyn. Syst, 29 (2011), 1573-1636.  doi: 10.3934/dcds.2011.29.1573.  Google Scholar

[24]

V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, 1985. doi: 10.1007/978-3-662-09922-3.  Google Scholar

[25]

C. C. McIntyreA. G. Richardson and W. M. Grill, Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle, Journal of Neurophysiology, 87 (2002), 995-1006.  doi: 10.1152/jn.00353.2001.  Google Scholar

[26]

H. Meffin, B. Tahayori, E. N. Sergeev, I. M. Y. Mareels, D. B. Grayden and A. N. Burkitt, Modelling extracellular electrical stimulation: Ⅲ. derivation and interpretation of neural tissue equations, Journal of Neural Engineering, 11 (2014), 065004. doi: 10.1088/1741-2560/11/6/065004.  Google Scholar

[27]

C. Meunier and B. Lamotte d'Incamps, Extending cable theory to heterogeneous dendrites, Neural Computation, 20 (2008), 1732-1775.  doi: 10.1162/neco.2008.12-06-425.  Google Scholar

[28]

L. M. MirM. F. BureauJ. GehlR. RangaraD. RouyJ. M. CaillaudP. DelaereD. BranellecB. Schwartz and D. Scherman, High-efficiency gene transfer into skeletal muscle mediated by electric pulses, Proc. Nat. Acad. Sci. USA., 96 (1999), 4262-4267.  doi: 10.1073/pnas.96.8.4262.  Google Scholar

[29]

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues, Critical Reviews in Biomedical Engineering, 21 (1993), 137-199.   Google Scholar

[30]

M. Neuss-Radu, Some extensions of two-scale convergence, Comptes Rendus de l'Académie des Sciences. Série 1, Mathématique, 322 (1996), 899–904.  Google Scholar

[31]

P. D. O'BrienL. M. HinderB. C. Callaghan and E. L. Feldman, Neurological consequences of obesity, The Lancet Neurology, 16 (2017), 465-477.  doi: 10.1016/S1474-4422(17)30084-4.  Google Scholar

[32]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[33]

M. PennacchioG. Savaré and P. C. Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM Journal on Mathematical Analysis, 37 (2005), 1333-1370.  doi: 10.1137/040615249.  Google Scholar

[34]

I. Pettersson, Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary, Differential Equations & Applications, 9 (2017), 393-412.  doi: 10.7153/dea-2017-09-28.  Google Scholar

[35]

C. Pham-DangO. KickT. ColletF. Gouin and M. Pinaud, Continuous peripheral nerve blocks with stimulating catheters, Reg. Anesth. Pain Med., 28 (2003), 83-88.   Google Scholar

[36]

R. Plonsey and R. C. Barr, Bioelectricity: A Quantitative Approach, Springer, Boston, MA, 2007.  Google Scholar

[37]

W. Rall, Time constants and electrotonic length of membrane cylinders and neurons, Biophysical Journal, 9 (1969), 1483-1508.  doi: 10.1016/S0006-3495(69)86467-2.  Google Scholar

[38]

F. Rattay, Electrical Nerve Stimulation. Theory, Experiments and Applications, Vienna, Austria: Springer–Verlag, 1990. Google Scholar

[39]

J. E. Riggs, The aging population, Neurologic Clinics, 16 (1998), 555-560.  doi: 10.1016/S0733-8619(05)70079-7.  Google Scholar

[40]

J. TeissiéN. EynardB. Gabriel and M. P. Rols, Electropermeabilization of cell membranes, Adv. Drug. Del. Rev, 35 (1999), 3-19.   Google Scholar

[41]

V. Zhikov, On an extension and an application of the two-scale convergence method, Sb. Math., 191 (2000), 973-1014.  doi: 10.1070/SM2000v191n07ABEH000491.  Google Scholar

Figure 1.  Simplified cross-section of a cylindrical myelinated axon (left) and the periodicity cell $ Y $ (right)
Figure 2.  2D surface generating by revolution the periodicity cell in the neighborhood of a Ranvier node
Figure 3.  Overlapping cells $ \tilde Y_k $ covering $ \Omega_ \varepsilon $
[1]

Aymen Balti, Valentina Lanza, Moulay Aziz-Alaoui. A multi-base harmonic balance method applied to Hodgkin-Huxley model. Mathematical Biosciences & Engineering, 2018, 15 (3) : 807-825. doi: 10.3934/mbe.2018036

[2]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[3]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

[4]

Hiroshi Matano, Yoichiro Mori. Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1573-1636. doi: 10.3934/dcds.2011.29.1573

[5]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[6]

Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 501-522. doi: 10.3934/dcds.2005.12.501

[7]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[8]

Belinda A. Batten, Hesam Shoori, John R. Singler, Madhuka H. Weerasinghe. Balanced truncation model reduction of a nonlinear cable-mass PDE system with interior damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 83-107. doi: 10.3934/dcdsb.2018162

[9]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

[10]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[11]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems & Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[12]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[13]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869

[14]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[15]

Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973

[16]

Ariosto Silva, Alexander R. A. Anderson, Robert Gatenby. A multiscale model of the bone marrow and hematopoiesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 643-658. doi: 10.3934/mbe.2011.8.643

[17]

Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449

[18]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[19]

Michael Frankel, Victor Roytburd, Gregory I. Sivashinsky. Dissipativity for a semi-linearized system modeling cellular flames. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 83-99. doi: 10.3934/dcdss.2011.4.83

[20]

Colette Calmelet, Diane Sepich. Surface tension and modeling of cellular intercalation during zebrafish gastrulation. Mathematical Biosciences & Engineering, 2010, 7 (2) : 259-275. doi: 10.3934/mbe.2010.7.259

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]