March  2020, 25(3): 859-875. doi: 10.3934/dcdsb.2019193

On steady state of some Lotka-Volterra competition-diffusion-advection model

College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China

* Corresponding author: Qi Wang

Received  November 2018 Revised  May 2019 Published  September 2019

In this paper, we study a shadow system of a two species Lotka-Volterra competition-diffusion-advection system, where the ratio of diffusion and advection rates are supposed to be a positive constant. We show that for any given migration, if the product of interspecific competition coefficients of competitors is small, then the shadow system has coexistence state; otherwise we can always find some migration such that it has no coexistence state. Moreover, these findings can be applied to steady state of the two-species Lotka-Volterra competition-diffusion-advection model. Particularly, we show that if the interspecific competition coefficient of the invader is sufficiently small, then rapid diffusion of the invader can drive to coexistence state.

Citation: Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 859-875. doi: 10.3934/dcdsb.2019193
References:
[1]

I. Averill, The Effect of Intermediate Advection on Two Competing Species, Doctoral Thesis, Ohio State University, 2012. Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Can. Appl. Math. Q., 3 (1995), 379-397.   Google Scholar

[3]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.  doi: 10.1007/BF00167155.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.  doi: 10.1137/0153014.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.  doi: 10.1007/s002850050122.  Google Scholar

[6]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003. doi: 10.1002/0470871296.  Google Scholar

[7]

R. S. CantrellC. Cosner and V. Huston, Permanence in ecological systems with diffusion, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553-559.   Google Scholar

[8]

R. S. CantrellC. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity, Rocky Mount. J. Math., 26 (1996), 1-35.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[9]

R. S. CantrellC. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dynam. Differential Equations, 16 (2004), 973-1010.  doi: 10.1007/s10884-004-7831-y.  Google Scholar

[10]

C. Cosner and Y. Lou, When does movement toward better environment benefit a population?, J. Math. Analysis Applic., 277 (2003), 489-503.  doi: 10.1016/S0022-247X(02)00575-9.  Google Scholar

[11]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[12]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions, J. Diff. Eqs., 181 (2002), 92-132.  doi: 10.1006/jdeq.2001.4074.  Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior, J. Diff. Eqs., 181 (2002), 133-164.  doi: 10.1006/jdeq.2001.4075.  Google Scholar

[14]

Y. Du, Realization of prescribed patterns in the competition model, J. Diff. Eqs., 193 (2003), 147-179.  doi: 10.1016/S0022-0396(03)00056-1.  Google Scholar

[15]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281-336.  doi: 10.1017/S0308210500023659.  Google Scholar

[16]

A. Hastings, Spatial heterogeneity and ecological models, Ecology, 71 (1990), 426-428.  doi: 10.2307/1940296.  Google Scholar

[17]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: heterogeneity vs. homogeneity, J. Diff. Eqs., 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[18]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: the general case, J. Diff. Eqs., 254 (2013), 4088-4108.  doi: 10.1016/j.jde.2013.02.009.  Google Scholar

[19]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I, Comm. Pure Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[20]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0.  Google Scholar

[21]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, III, Calc. Var. Partial Differential Equations 56 (2017), Art. 132, 26 pp. doi: 10.1007/s00526-017-1234-5.  Google Scholar

[22]

E. E. HolmesM. A. LewisJ. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.  doi: 10.2307/1939378.  Google Scholar

[23]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications, World Scientiffc Series Applicable Analysis, 4, World Scientiffc, River Edge, NJ, (1995), 343–358. doi: 10.1142/9789812796417_0022.  Google Scholar

[24]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Diff. Eqs., 185 (2002), 97-136.  doi: 10.1006/jdeq.2001.4157.  Google Scholar

[25]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coeffcients, J. Diff. Eqs., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[26]

V. HutsonY. LouK. Mischaikow and P. Poláčik, Competing species near the degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491.  doi: 10.1137/S0036141002402189.  Google Scholar

[27]

V. HutsonS. MartinezK. Mischaikow and G. T. Vicker, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[28]

V. HutsonK. Mischaikow and P. Polá$\breve{c}$ik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.  doi: 10.1007/s002850100106.  Google Scholar

[29]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk, 3 (1948), 3-95.   Google Scholar

[30]

F. LiL. Wang and Y. Wang, On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 669-686.  doi: 10.3934/dcdsb.2011.15.669.  Google Scholar

[31]

J. López-Gómez, Coexistence and meta-coexistence for competing species, Houston J. Math., 29 (2003), 483-536.   Google Scholar

[32]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[33]

Y. LouS. Martinez and P. Polá$\breve{c}$ik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Diff. Eqs., 230 (2006), 720-742.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

show all references

References:
[1]

I. Averill, The Effect of Intermediate Advection on Two Competing Species, Doctoral Thesis, Ohio State University, 2012. Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Can. Appl. Math. Q., 3 (1995), 379-397.   Google Scholar

[3]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.  doi: 10.1007/BF00167155.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.  doi: 10.1137/0153014.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.  doi: 10.1007/s002850050122.  Google Scholar

[6]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003. doi: 10.1002/0470871296.  Google Scholar

[7]

R. S. CantrellC. Cosner and V. Huston, Permanence in ecological systems with diffusion, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553-559.   Google Scholar

[8]

R. S. CantrellC. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity, Rocky Mount. J. Math., 26 (1996), 1-35.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[9]

R. S. CantrellC. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dynam. Differential Equations, 16 (2004), 973-1010.  doi: 10.1007/s10884-004-7831-y.  Google Scholar

[10]

C. Cosner and Y. Lou, When does movement toward better environment benefit a population?, J. Math. Analysis Applic., 277 (2003), 489-503.  doi: 10.1016/S0022-247X(02)00575-9.  Google Scholar

[11]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[12]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions, J. Diff. Eqs., 181 (2002), 92-132.  doi: 10.1006/jdeq.2001.4074.  Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior, J. Diff. Eqs., 181 (2002), 133-164.  doi: 10.1006/jdeq.2001.4075.  Google Scholar

[14]

Y. Du, Realization of prescribed patterns in the competition model, J. Diff. Eqs., 193 (2003), 147-179.  doi: 10.1016/S0022-0396(03)00056-1.  Google Scholar

[15]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281-336.  doi: 10.1017/S0308210500023659.  Google Scholar

[16]

A. Hastings, Spatial heterogeneity and ecological models, Ecology, 71 (1990), 426-428.  doi: 10.2307/1940296.  Google Scholar

[17]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: heterogeneity vs. homogeneity, J. Diff. Eqs., 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[18]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: the general case, J. Diff. Eqs., 254 (2013), 4088-4108.  doi: 10.1016/j.jde.2013.02.009.  Google Scholar

[19]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I, Comm. Pure Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[20]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0.  Google Scholar

[21]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, III, Calc. Var. Partial Differential Equations 56 (2017), Art. 132, 26 pp. doi: 10.1007/s00526-017-1234-5.  Google Scholar

[22]

E. E. HolmesM. A. LewisJ. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.  doi: 10.2307/1939378.  Google Scholar

[23]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications, World Scientiffc Series Applicable Analysis, 4, World Scientiffc, River Edge, NJ, (1995), 343–358. doi: 10.1142/9789812796417_0022.  Google Scholar

[24]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Diff. Eqs., 185 (2002), 97-136.  doi: 10.1006/jdeq.2001.4157.  Google Scholar

[25]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coeffcients, J. Diff. Eqs., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[26]

V. HutsonY. LouK. Mischaikow and P. Poláčik, Competing species near the degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491.  doi: 10.1137/S0036141002402189.  Google Scholar

[27]

V. HutsonS. MartinezK. Mischaikow and G. T. Vicker, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[28]

V. HutsonK. Mischaikow and P. Polá$\breve{c}$ik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.  doi: 10.1007/s002850100106.  Google Scholar

[29]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk, 3 (1948), 3-95.   Google Scholar

[30]

F. LiL. Wang and Y. Wang, On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 669-686.  doi: 10.3934/dcdsb.2011.15.669.  Google Scholar

[31]

J. López-Gómez, Coexistence and meta-coexistence for competing species, Houston J. Math., 29 (2003), 483-536.   Google Scholar

[32]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[33]

Y. LouS. Martinez and P. Polá$\breve{c}$ik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Diff. Eqs., 230 (2006), 720-742.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[1]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[15]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[20]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (271)
  • HTML views (254)
  • Cited by (0)

Other articles
by authors

[Back to Top]