
-
Previous Article
The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems
- DCDS-B Home
- This Issue
-
Next Article
On steady state of some Lotka-Volterra competition-diffusion-advection model
Global dynamics of a reaction-diffusion system with intraguild predation and internal storage
1. | School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China |
2. | Department of Mathematics and National Center of Theoretical Science, National Tsing-Hua University, Hsinchu 300, Taiwan |
3. | Department of Natural Science in the Center for General Education, Chang Gung University, Guishan, Taoyuan 333, Taiwan |
4. | Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan |
This paper presents a reaction-diffusion system modeling interactions of the intraguild predator and prey in an unstirred chemostat, in which the predator can also compete with its prey for one single nutrient resource that can be stored within individuals. Under suitable conditions, we first show that there are at least three steady-state solutions for the full system, a trivial steady-state solution with neither species present, and two semitrivial steady-state solutions with just one of the species. Then we establish that coexistence of the intraguild predator and prey can occur if both of the semitrivial steady-state solutions are invasible by the missing species. Comparing with the system without predation, our numerical simulations show that the introduction of predation in an ecosystem can enhance the coexistence of species. Our mathematical arguments also work for the linear food chain model (top-down predation), in which the top-down predator only feeds on the prey but does not compete for nutrient resource with the prey. In our numerical studies, we also do a comparison of intraguild predation and top-down predation.
References:
[1] |
C. J. Bampfylde and M. A. Lewis,
Biological control through intraguild predation: Case studies in pest control, invasive species and range expansion, Bull. Math. Biol., 69 (2007), 1031-1066.
doi: 10.1007/s11538-006-9158-9. |
[2] |
S. Diehl,
Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships, Oikos, 68 (1993), 151-157.
doi: 10.2307/3545321. |
[3] |
S. Diehl,
Direct and indirect effects of omnivory in a littoral lake community, Ecology, 76 (1995), 1727-1740.
doi: 10.2307/1940706. |
[4] |
S. Diehl and M. Feissel,
Effects of enrichment on threelevel food chains with omnivory, Am. Nat., 155 (2000), 200-218.
doi: 10.1086/303319. |
[5] |
S. Diehl and M. Feissel,
Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates, Ecology, 82 (2001), 2977-2983.
doi: 10.2307/2679828. |
[6] |
M. Droop,
Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264-272.
doi: 10.1111/j.1529-8817.1973.tb04092.x. |
[7] |
J. P. Grover, Resource Competition, Chapman and Hall, London, 1997.
doi: 10.1007/978-1-4615-6397-6. |
[8] |
J. P. Grover, Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model, Am. Nat., 138 (1991), 811-835. Google Scholar |
[9] |
J. P. Grover,
Resource storage and competition with spatial and temporal variation in resource availability, Am. Nat., 178 (2011), 124-148.
doi: 10.1086/662163. |
[10] |
J. P. Grover, S. B. Hsu and F.-B. Wang,
Competition between microorganisms for a single limiting resource with cell quota structure and spatial variation, J. Math. Biol., 64 (2012), 713-743.
doi: 10.1007/s00285-011-0426-4. |
[11] |
J. P. Grover and F.-B. Wang,
Competition for one nutrient with internal storage and toxin mortality, Math. Biosci., 244 (2013), 82-90.
doi: 10.1016/j.mbs.2013.04.009. |
[12] |
J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. |
[13] |
W. M. Hirsch, H. L. Smith and X.-Q. Zhao,
Chain transitivity, attractivity, and strong repellers for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[14] |
R. D. Holt and G. A. Polis,
A theoretical framework for intraguild predation, Am. Nat., 149 (1997), 745-764.
doi: 10.1086/286018. |
[15] |
S. B. Hsu, S. Hubbell and P. Waltman,
A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.
doi: 10.1137/0132030. |
[16] |
S. B. Hsu, J. Jiang and F. B. Wang,
On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.
doi: 10.1016/j.jde.2009.12.014. |
[17] |
S. B. Hsu, K.-Y. Lam and F. B. Wang,
Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol., 75 (2017), 1775-1825.
doi: 10.1007/s00285-017-1134-5. |
[18] |
S. B. Hsu, J. P. Shi and F. B. Wang,
Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3169-3189.
doi: 10.3934/dcdsb.2014.19.3169. |
[19] |
S. B. Hsu and P. Waltman,
On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.
doi: 10.1137/0153051. |
[20] |
P. Magal and X. -Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[21] |
J. Mallet-Paret and R. D. Nussbaum,
Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theor. Appl., 7 (2010), 103-143.
doi: 10.1007/s11784-010-0010-3. |
[22] |
R. Martin and H. L. Smith,
Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[23] |
L. Mei, S. B. Hsu and F.-B. Wang,
Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 607-620.
doi: 10.3934/dcdsb.2016.21.607. |
[24] |
F. M. M. Morel,
Kinetics of nutrient uptake and growth in phytoplankton, J. Phycol., 23 (1987), 137-150.
doi: 10.1111/j.1529-8817.1987.tb04436.x. |
[25] |
H. Nie, S.-B. Hsu and F.-B. Wang,
Steady-state solutions of a reaction-diffusion system arising from intraguild predation and internal storage, J. Differential Equations, 266 (2019), 8459-8491.
doi: 10.1016/j.jde.2018.12.035. |
[26] | H. Nie, J. H. Wu and Z. G. Wang, Dynamics on the Unstirred Chemostat Models, Science Press, Beijing, 2017. Google Scholar |
[27] |
G. A. Polis and et al,
The ecology and evolution of intraguild predation: Potential competitors that eat each other, Annu. Rew. Ecol. Syst., 20 (1989), 297-330.
doi: 10.1146/annurev.es.20.110189.001501. |
[28] |
G. A. Polis and R. D. Holt,
Intraguild predation: the dynamics of complex trophic interactions, Trends Ecol. Evol., 7 (1992), 151-154.
doi: 10.1146/annurev.es.20.110189.001501. |
[29] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[30] |
J. A. Rosenheim, H. K. Kaya, L. E. Ehleret, J. J. Marois and B. A. Jaffee,
Intraguild predation among biological control agents: Theory and evidence, Biol. Control, 5 (1995), 303-335.
doi: 10.1006/bcon.1995.1038. |
[31] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995. |
[32] |
H. L. Smith and P. Waltman,
Competition for a single limiting resouce in continuous culture: the variable-yield model, SIAM J. Appl. Math., 54 (1994), 1113-1131.
doi: 10.1137/S0036139993245344. |
[33] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[34] |
H. L. Smith and X.-Q. Zhao,
Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2. |
[35] |
F.-B. Wang, S.-B. Hsu and Y.-H. Ho,
Mathematical analysis on a Droop model with intraguild predation, Taiwanese J. Math., 23 (2019), 351-373.
doi: 10.11650/tjm/181011. |
[36] |
S. Wilken, J. M. H. Verspagen, S. Naus-Wiezer, E. V. Donk and J. Huisman,
Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source, Oikos, 123 (2014), 423-432.
doi: 10.1111/j.1600-0706.2013.00736.x. |
[37] |
J. H. Wu,
Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835.
doi: 10.1016/S0362-546X(98)00250-8. |
[38] |
J. H. Wu and G. S. K. Wolkowicz,
A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, 172 (2001), 300-332.
doi: 10.1006/jdeq.2000.3870. |
[39] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.
doi: 10.1007/978-3-319-56433-3. |
show all references
References:
[1] |
C. J. Bampfylde and M. A. Lewis,
Biological control through intraguild predation: Case studies in pest control, invasive species and range expansion, Bull. Math. Biol., 69 (2007), 1031-1066.
doi: 10.1007/s11538-006-9158-9. |
[2] |
S. Diehl,
Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships, Oikos, 68 (1993), 151-157.
doi: 10.2307/3545321. |
[3] |
S. Diehl,
Direct and indirect effects of omnivory in a littoral lake community, Ecology, 76 (1995), 1727-1740.
doi: 10.2307/1940706. |
[4] |
S. Diehl and M. Feissel,
Effects of enrichment on threelevel food chains with omnivory, Am. Nat., 155 (2000), 200-218.
doi: 10.1086/303319. |
[5] |
S. Diehl and M. Feissel,
Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates, Ecology, 82 (2001), 2977-2983.
doi: 10.2307/2679828. |
[6] |
M. Droop,
Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264-272.
doi: 10.1111/j.1529-8817.1973.tb04092.x. |
[7] |
J. P. Grover, Resource Competition, Chapman and Hall, London, 1997.
doi: 10.1007/978-1-4615-6397-6. |
[8] |
J. P. Grover, Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model, Am. Nat., 138 (1991), 811-835. Google Scholar |
[9] |
J. P. Grover,
Resource storage and competition with spatial and temporal variation in resource availability, Am. Nat., 178 (2011), 124-148.
doi: 10.1086/662163. |
[10] |
J. P. Grover, S. B. Hsu and F.-B. Wang,
Competition between microorganisms for a single limiting resource with cell quota structure and spatial variation, J. Math. Biol., 64 (2012), 713-743.
doi: 10.1007/s00285-011-0426-4. |
[11] |
J. P. Grover and F.-B. Wang,
Competition for one nutrient with internal storage and toxin mortality, Math. Biosci., 244 (2013), 82-90.
doi: 10.1016/j.mbs.2013.04.009. |
[12] |
J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. |
[13] |
W. M. Hirsch, H. L. Smith and X.-Q. Zhao,
Chain transitivity, attractivity, and strong repellers for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[14] |
R. D. Holt and G. A. Polis,
A theoretical framework for intraguild predation, Am. Nat., 149 (1997), 745-764.
doi: 10.1086/286018. |
[15] |
S. B. Hsu, S. Hubbell and P. Waltman,
A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.
doi: 10.1137/0132030. |
[16] |
S. B. Hsu, J. Jiang and F. B. Wang,
On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.
doi: 10.1016/j.jde.2009.12.014. |
[17] |
S. B. Hsu, K.-Y. Lam and F. B. Wang,
Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol., 75 (2017), 1775-1825.
doi: 10.1007/s00285-017-1134-5. |
[18] |
S. B. Hsu, J. P. Shi and F. B. Wang,
Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3169-3189.
doi: 10.3934/dcdsb.2014.19.3169. |
[19] |
S. B. Hsu and P. Waltman,
On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.
doi: 10.1137/0153051. |
[20] |
P. Magal and X. -Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[21] |
J. Mallet-Paret and R. D. Nussbaum,
Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theor. Appl., 7 (2010), 103-143.
doi: 10.1007/s11784-010-0010-3. |
[22] |
R. Martin and H. L. Smith,
Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[23] |
L. Mei, S. B. Hsu and F.-B. Wang,
Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 607-620.
doi: 10.3934/dcdsb.2016.21.607. |
[24] |
F. M. M. Morel,
Kinetics of nutrient uptake and growth in phytoplankton, J. Phycol., 23 (1987), 137-150.
doi: 10.1111/j.1529-8817.1987.tb04436.x. |
[25] |
H. Nie, S.-B. Hsu and F.-B. Wang,
Steady-state solutions of a reaction-diffusion system arising from intraguild predation and internal storage, J. Differential Equations, 266 (2019), 8459-8491.
doi: 10.1016/j.jde.2018.12.035. |
[26] | H. Nie, J. H. Wu and Z. G. Wang, Dynamics on the Unstirred Chemostat Models, Science Press, Beijing, 2017. Google Scholar |
[27] |
G. A. Polis and et al,
The ecology and evolution of intraguild predation: Potential competitors that eat each other, Annu. Rew. Ecol. Syst., 20 (1989), 297-330.
doi: 10.1146/annurev.es.20.110189.001501. |
[28] |
G. A. Polis and R. D. Holt,
Intraguild predation: the dynamics of complex trophic interactions, Trends Ecol. Evol., 7 (1992), 151-154.
doi: 10.1146/annurev.es.20.110189.001501. |
[29] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[30] |
J. A. Rosenheim, H. K. Kaya, L. E. Ehleret, J. J. Marois and B. A. Jaffee,
Intraguild predation among biological control agents: Theory and evidence, Biol. Control, 5 (1995), 303-335.
doi: 10.1006/bcon.1995.1038. |
[31] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995. |
[32] |
H. L. Smith and P. Waltman,
Competition for a single limiting resouce in continuous culture: the variable-yield model, SIAM J. Appl. Math., 54 (1994), 1113-1131.
doi: 10.1137/S0036139993245344. |
[33] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[34] |
H. L. Smith and X.-Q. Zhao,
Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2. |
[35] |
F.-B. Wang, S.-B. Hsu and Y.-H. Ho,
Mathematical analysis on a Droop model with intraguild predation, Taiwanese J. Math., 23 (2019), 351-373.
doi: 10.11650/tjm/181011. |
[36] |
S. Wilken, J. M. H. Verspagen, S. Naus-Wiezer, E. V. Donk and J. Huisman,
Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source, Oikos, 123 (2014), 423-432.
doi: 10.1111/j.1600-0706.2013.00736.x. |
[37] |
J. H. Wu,
Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835.
doi: 10.1016/S0362-546X(98)00250-8. |
[38] |
J. H. Wu and G. S. K. Wolkowicz,
A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, 172 (2001), 300-332.
doi: 10.1006/jdeq.2000.3870. |
[39] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.
doi: 10.1007/978-3-319-56433-3. |




Quantity | Value | Quantity | Value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.37 | |
|
Quantity | Value | Quantity | Value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.37 | |
|
[1] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[2] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[3] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[4] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[5] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[6] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[7] |
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 |
[8] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[9] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[10] |
Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298 |
[11] |
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020369 |
[12] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[13] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[14] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[15] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[16] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[17] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[18] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[19] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[20] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]