
-
Previous Article
Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment
- DCDS-B Home
- This Issue
-
Next Article
Global dynamics of a reaction-diffusion system with intraguild predation and internal storage
The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems
1. | Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", Viale Lincoln n.5, 81100 Caserta, Italia |
2. | Department of Mathematics, Trinity University, San Antonio, TX 78212-7200, USA |
We consider a discrete non-autonomous semi-dynamical system generated by a family of continuous maps defined on a locally compact metric space. It is assumed that this family of maps uniformly converges to a continuous map. Such a non-autonomous system is called an asymptotically autonomous system. We extend the dynamical system to the metric one-point compactification of the phase space. This is done via the construction of an associated skew-product dynamical system. We prove, among other things, that the omega limit sets are invariant and invariantly connected. We apply our results to two populations models, the Ricker model with no Allee effect and Elaydi-Sacker model with the Allee effect, where it is assumed that the reproduction rate changes with time due to habitat fluctuation.
References:
[1] |
W. C. Allee, The Social Life of Animals, 3rd Edition, William Heineman Ltd, London and Toronto, 1941. Google Scholar |
[2] |
L. Assas, S. Elaydi, E. Kwessi, G. Livadiotis and D. Ribble,
Hierarchical competition models with the Allee effect, J. Biological Dynamics, 9 (2015), 32-44.
doi: 10.1080/17513758.2014.923118. |
[3] |
L. Assas, B. Dennis, S. Elaydi, E. Kwessi and G. Livadiotis,
Hierarchical competition models with the Allee effect II: The case of immigration, J. Biological Dynamics, 9 (2015), 288-316.
doi: 10.1080/17513758.2015.1077999. |
[4] |
B. Aulbach and S. Siegmund,
The dichotomy spectrum for noninvertible systems of linear difference equations, J. Diff. Equ. Appl., 7 (2001), 895-913.
doi: 10.1080/10236190108808310. |
[5] |
B. Aulbach and T. Wanner,
Invariant foliations and decoupling of non-autonomous difference equations, J. Diff. Equ. Appl., 9 (2003), 459-472.
doi: 10.1080/1023619031000076524. |
[6] |
B. Aulbach and T. Wanner,
Topological simplification of non-autonomous difference equations, J. Diff. Equ. Appl., 12 (2006), 283-296.
doi: 10.1080/10236190500489384. |
[7] |
E. Cabral Balreira, S. Elaydi and R. Luís,
Global dynamics of triangular maps, Nonlinear Analysis, Theory, Methods and Appl., Ser. A, 104 (2014), 75-83.
doi: 10.1016/j.na.2014.03.019. |
[8] |
L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992.
doi: 10.1007/BFb0084762. |
[9] |
M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511755316.![]() ![]() |
[10] |
J. S. Cánovas,
On $\omega$-limit sets of non-autonomous discrete systems, J. Diff. Equ. Appl., 12 (2006), 95-100.
doi: 10.1080/10236190500424274. |
[11] |
E. D'Aniello and H. Oliveira,
Pitchfork bifurcation for non-autonomous interval maps, J. Diff. Equ. Appl., 15 (2009), 291-302.
doi: 10.1080/10236190802258669. |
[12] |
E. D'Aniello and T. H. Steele,
The $\omega$-limit sets of alternating systems, J. Diff. Equ. Appl., 17 (2011), 1793-1799.
doi: 10.1080/10236198.2010.488227. |
[13] |
E. D'Aniello and T. H. Steele,
Stability in the family of $\omega$-limit sets of alternating systems, J. Math. Anal. Appl., 389 (2012), 1191-1203.
doi: 10.1016/j.jmaa.2011.12.056. |
[14] |
Y. N. Dowker and F. G. Friedlander,
On limit sets in dynamical systems, Proc. London Math. Soc., 4 (1954), 168-176.
doi: 10.1112/plms/s3-4.1.168. |
[15] |
J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass, 1966. |
[16] |
J. Dvořáková, N. Neumärker and M. Štefánková,
On $\omega$-limit sets of non-autonomous dynamical systems with a uniform limit of type $2^{\infty}$, J. Diff. Equ. Appl., 22 (2016), 636-644.
doi: 10.1080/10236198.2015.1123706. |
[17] |
S. Elaydi, E. Kwessi and G. Livadiotis,
Hierarchical competition models with the Allee effect III: Multispecies, J. Biological Dynamics, 12 (2018), 271-287.
doi: 10.1080/17513758.2018.1439537. |
[18] |
S. Elaydi and R. J. Sacker,
Global stability of periodic orbits of non-autonomous difference equations and population biology, J. Diff. Equ. Appl., 208 (2005), 258-273.
doi: 10.1016/j.jde.2003.10.024. |
[19] |
S. Elaydi and R. Sacker, Skew-Product Dynamical Systems: Applications to Difference Equations, 2004. Available from: http://www-bcf.usc.edu/ rsacker/pubs/UAE.pdf. Google Scholar |
[20] |
S. N. Elaydi and R. J. Sacker,
Population models with Allee effect: A new model, J. Biological Dynamics, 4 (2010), 397-408.
doi: 10.1080/17513750903377434. |
[21] |
N. Franco, L. Silva and P. Simões,
Symbolic dynamics and renormalization of non-autonomous $k$-periodic dynamical systems, J. Diff. Equ. Appl., 19 (2013), 27-38.
doi: 10.1080/10236198.2011.611804. |
[22] |
J. E. Franke and A.-A. Yakubu,
Population models with periodic recruitment functions and survival rates, J. Diff. Equ. Appl., 11 (2005), 1169-1184.
doi: 10.1080/10236190500386275. |
[23] |
R. Kempf,
On $\Omega$-limit sets of discrete-time dynamical systems, J. Diff. Equ. Appl., 8 (2002), 1121-1131.
doi: 10.1080/10236190290029024. |
[24] |
P. E. Kloeden and T. Lorenz,
Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.
doi: 10.1090/proc/12735. |
[25] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, AMS, Providence, RI, 2011.
doi: 10.1090/surv/176. |
[26] |
S. F. Kolyada,
On dynamics of triangular maps of the square, Ergodic Theory Dynam. Systems, 12 (1992), 749-768.
doi: 10.1017/S0143385700007082. |
[27] |
J. P. La Salle, The stability of dynamical systems, in CBMS-NSf Regional Conference Series in Applied Mathematics, Siam, (1976).
doi: 10.1137/1.9781611970432. |
[28] |
V. Jiménez López and J. Smítal,
$\omega$-limit sets for triangular mappings, Fundamenta Math., 167 (2001), 1-15.
doi: 10.4064/fm167-1-1. |
[29] |
M. Mandelkern,
Metrization of the one-point compactification, Proc. Amer. Math. Soc., 107 (1989), 1111-1115.
doi: 10.1090/S0002-9939-1989-0991703-4. |
[30] |
C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Note in Mathematics, 2002. Springer-Verlag, Berlin 2010.
doi: 10.1007/978-3-642-14258-1. |
[31] |
G. Rangel, Global attractors in partial differential equations, in Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 885–982.
doi: 10.1016/S1874-575X(02)80038-8. |
[32] |
L. Silva,
Periodic attractors of nonautonomous flat-topped tent systems, Discrete Contin. Dyn. Syst. B, 24 (2019), 1867-1874.
|
show all references
Saber Elaydi acknowledges the hospitality of the Department of Mathematics and Physics of the Universit`a degli Studi della Campania “Luigi Vanvitelli”
References:
[1] |
W. C. Allee, The Social Life of Animals, 3rd Edition, William Heineman Ltd, London and Toronto, 1941. Google Scholar |
[2] |
L. Assas, S. Elaydi, E. Kwessi, G. Livadiotis and D. Ribble,
Hierarchical competition models with the Allee effect, J. Biological Dynamics, 9 (2015), 32-44.
doi: 10.1080/17513758.2014.923118. |
[3] |
L. Assas, B. Dennis, S. Elaydi, E. Kwessi and G. Livadiotis,
Hierarchical competition models with the Allee effect II: The case of immigration, J. Biological Dynamics, 9 (2015), 288-316.
doi: 10.1080/17513758.2015.1077999. |
[4] |
B. Aulbach and S. Siegmund,
The dichotomy spectrum for noninvertible systems of linear difference equations, J. Diff. Equ. Appl., 7 (2001), 895-913.
doi: 10.1080/10236190108808310. |
[5] |
B. Aulbach and T. Wanner,
Invariant foliations and decoupling of non-autonomous difference equations, J. Diff. Equ. Appl., 9 (2003), 459-472.
doi: 10.1080/1023619031000076524. |
[6] |
B. Aulbach and T. Wanner,
Topological simplification of non-autonomous difference equations, J. Diff. Equ. Appl., 12 (2006), 283-296.
doi: 10.1080/10236190500489384. |
[7] |
E. Cabral Balreira, S. Elaydi and R. Luís,
Global dynamics of triangular maps, Nonlinear Analysis, Theory, Methods and Appl., Ser. A, 104 (2014), 75-83.
doi: 10.1016/j.na.2014.03.019. |
[8] |
L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992.
doi: 10.1007/BFb0084762. |
[9] |
M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511755316.![]() ![]() |
[10] |
J. S. Cánovas,
On $\omega$-limit sets of non-autonomous discrete systems, J. Diff. Equ. Appl., 12 (2006), 95-100.
doi: 10.1080/10236190500424274. |
[11] |
E. D'Aniello and H. Oliveira,
Pitchfork bifurcation for non-autonomous interval maps, J. Diff. Equ. Appl., 15 (2009), 291-302.
doi: 10.1080/10236190802258669. |
[12] |
E. D'Aniello and T. H. Steele,
The $\omega$-limit sets of alternating systems, J. Diff. Equ. Appl., 17 (2011), 1793-1799.
doi: 10.1080/10236198.2010.488227. |
[13] |
E. D'Aniello and T. H. Steele,
Stability in the family of $\omega$-limit sets of alternating systems, J. Math. Anal. Appl., 389 (2012), 1191-1203.
doi: 10.1016/j.jmaa.2011.12.056. |
[14] |
Y. N. Dowker and F. G. Friedlander,
On limit sets in dynamical systems, Proc. London Math. Soc., 4 (1954), 168-176.
doi: 10.1112/plms/s3-4.1.168. |
[15] |
J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass, 1966. |
[16] |
J. Dvořáková, N. Neumärker and M. Štefánková,
On $\omega$-limit sets of non-autonomous dynamical systems with a uniform limit of type $2^{\infty}$, J. Diff. Equ. Appl., 22 (2016), 636-644.
doi: 10.1080/10236198.2015.1123706. |
[17] |
S. Elaydi, E. Kwessi and G. Livadiotis,
Hierarchical competition models with the Allee effect III: Multispecies, J. Biological Dynamics, 12 (2018), 271-287.
doi: 10.1080/17513758.2018.1439537. |
[18] |
S. Elaydi and R. J. Sacker,
Global stability of periodic orbits of non-autonomous difference equations and population biology, J. Diff. Equ. Appl., 208 (2005), 258-273.
doi: 10.1016/j.jde.2003.10.024. |
[19] |
S. Elaydi and R. Sacker, Skew-Product Dynamical Systems: Applications to Difference Equations, 2004. Available from: http://www-bcf.usc.edu/ rsacker/pubs/UAE.pdf. Google Scholar |
[20] |
S. N. Elaydi and R. J. Sacker,
Population models with Allee effect: A new model, J. Biological Dynamics, 4 (2010), 397-408.
doi: 10.1080/17513750903377434. |
[21] |
N. Franco, L. Silva and P. Simões,
Symbolic dynamics and renormalization of non-autonomous $k$-periodic dynamical systems, J. Diff. Equ. Appl., 19 (2013), 27-38.
doi: 10.1080/10236198.2011.611804. |
[22] |
J. E. Franke and A.-A. Yakubu,
Population models with periodic recruitment functions and survival rates, J. Diff. Equ. Appl., 11 (2005), 1169-1184.
doi: 10.1080/10236190500386275. |
[23] |
R. Kempf,
On $\Omega$-limit sets of discrete-time dynamical systems, J. Diff. Equ. Appl., 8 (2002), 1121-1131.
doi: 10.1080/10236190290029024. |
[24] |
P. E. Kloeden and T. Lorenz,
Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.
doi: 10.1090/proc/12735. |
[25] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, AMS, Providence, RI, 2011.
doi: 10.1090/surv/176. |
[26] |
S. F. Kolyada,
On dynamics of triangular maps of the square, Ergodic Theory Dynam. Systems, 12 (1992), 749-768.
doi: 10.1017/S0143385700007082. |
[27] |
J. P. La Salle, The stability of dynamical systems, in CBMS-NSf Regional Conference Series in Applied Mathematics, Siam, (1976).
doi: 10.1137/1.9781611970432. |
[28] |
V. Jiménez López and J. Smítal,
$\omega$-limit sets for triangular mappings, Fundamenta Math., 167 (2001), 1-15.
doi: 10.4064/fm167-1-1. |
[29] |
M. Mandelkern,
Metrization of the one-point compactification, Proc. Amer. Math. Soc., 107 (1989), 1111-1115.
doi: 10.1090/S0002-9939-1989-0991703-4. |
[30] |
C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Note in Mathematics, 2002. Springer-Verlag, Berlin 2010.
doi: 10.1007/978-3-642-14258-1. |
[31] |
G. Rangel, Global attractors in partial differential equations, in Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 885–982.
doi: 10.1016/S1874-575X(02)80038-8. |
[32] |
L. Silva,
Periodic attractors of nonautonomous flat-topped tent systems, Discrete Contin. Dyn. Syst. B, 24 (2019), 1867-1874.
|




[1] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[2] |
Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006 |
[3] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399 |
[4] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[5] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[6] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[7] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[8] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[9] |
Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065 |
[10] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[11] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[12] |
Serena Brianzoni, Giovanni Campisi. Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021116 |
[13] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012 |
[14] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[15] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[16] |
Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021047 |
[17] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[18] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[19] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[20] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]