March  2020, 25(3): 935-955. doi: 10.3934/dcdsb.2019197

The global attractor for a class of extensible beams with nonlocal weak damping

Department of Mathematics, Nanjing University, Nanjing, 210093, China

* Corresponding author: Chengkui Zhong

Received  January 2019 Published  September 2019

Fund Project: This work is partly supported by the NSFC (11731005, 11801228) and Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19-0027).

The goal of this paper is to study the long-time behavior of a class of extensible beams equation with the nonlocal weak damping
$ \begin{eqnarray*} u_{tt}+\Delta^2 u-m(\|\nabla u\|^2)\Delta u +\| u_t\|^{p}u_t+f(u) = h, \rm{in}\; \Omega\times\mathbb{R^{+}}, p\geq0 \end{eqnarray*} $
on a bounded smooth domain
$ \Omega\subset\mathbb{R}^{n} $
with hinged (clamped) boundary condition. Under some suitable conditions on the Kirchhoff coefficient
$ m(\|\nabla u\|^2) $
and the nonlinear term
$ f(u) $
, the well-posedness is established by means of the monotone operator theory and the existence of a global attractor is obtained in the subcritical case, where the asymptotic smooothness of the semigroup is verified by the energy reconstruction method.
Citation: Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 935-955. doi: 10.3934/dcdsb.2019197
References:
[1]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Appl. Anal., 55 (1994), 61-78.  doi: 10.1080/00036819408840290.  Google Scholar

[2]

E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness, regularity and stability, Applicable Anal., 13 (1982), 219-233.  doi: 10.1080/00036818208839392.  Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.  Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986), 839-842.  doi: 10.1016/0362-546X(86)90071-4.  Google Scholar

[7]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces., Noordhoff International Publishing, Leiden, 1976,352 pp.  Google Scholar

[8]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.  Google Scholar

[9]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. 436 pp.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math.Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659-674.  doi: 10.3934/cpaa.2012.11.659.  Google Scholar

[12]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060.  doi: 10.3934/dcds.2009.25.1041.  Google Scholar

[13]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J.Math. Anal.Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[14]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.  Google Scholar

[15]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167-175.  doi: 10.1007/BF01602658.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. AMS, Providence, RI, 1988.  Google Scholar

[17]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092.   Google Scholar

[18]

J.-L. Lions, On some questions in boundary value problems in mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, North-Holland, Amsterdam-New York, 30 (1978), 284–346.  Google Scholar

[19]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.   Google Scholar

[20]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.  Google Scholar

[21]

L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262.  doi: 10.1016/0022-247X(79)90192-6.  Google Scholar

[22]

F. J. MengJ. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 469 (2019), 1045-1069.  doi: 10.1016/j.jmaa.2018.09.050.  Google Scholar

[23]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete. Contin. Dyn. Syst. Ser. B, 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.  Google Scholar

[24]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[25]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[26]

I. Perai, Multiplicity of Solutions for the $p$-Laplacian, 1997. Google Scholar

[27]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[28]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin.Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[29]

M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[30]

J. Simon, Régularité de la solution d'une équation non linéaire dans ${{\mathbf{R}}^{N}}$, Journées d'Analyse Non Linéaire, Lecture Notes in Math., Springer, Berlin, 665 (1978), 205–227.  Google Scholar

[31]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pure Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[32]

R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. AMS, Providence, RI, 1997.  Google Scholar

[33]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse Math., 8 (1999), 173-193.  doi: 10.5802/afst.928.  Google Scholar

[36]

S. Woinowsky-Krieger, The efect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.   Google Scholar

[37]

L. Yang and X. Wang, Existence of attractors for the non-autonomous Berger equation with nonlinear damping, Electron. J. Differential Equations, (2017), 14 pp.  Google Scholar

[38]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254.  doi: 10.1016/j.jmaa.2007.06.011.  Google Scholar

[39]

Z. J. Yang, On an extensible beam equation with nonlinear damping and source terms, J.Dierential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.  Google Scholar

show all references

References:
[1]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Appl. Anal., 55 (1994), 61-78.  doi: 10.1080/00036819408840290.  Google Scholar

[2]

E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness, regularity and stability, Applicable Anal., 13 (1982), 219-233.  doi: 10.1080/00036818208839392.  Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.  Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986), 839-842.  doi: 10.1016/0362-546X(86)90071-4.  Google Scholar

[7]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces., Noordhoff International Publishing, Leiden, 1976,352 pp.  Google Scholar

[8]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.  Google Scholar

[9]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. 436 pp.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math.Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659-674.  doi: 10.3934/cpaa.2012.11.659.  Google Scholar

[12]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060.  doi: 10.3934/dcds.2009.25.1041.  Google Scholar

[13]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J.Math. Anal.Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[14]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.  Google Scholar

[15]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167-175.  doi: 10.1007/BF01602658.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. AMS, Providence, RI, 1988.  Google Scholar

[17]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092.   Google Scholar

[18]

J.-L. Lions, On some questions in boundary value problems in mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, North-Holland, Amsterdam-New York, 30 (1978), 284–346.  Google Scholar

[19]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.   Google Scholar

[20]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.  Google Scholar

[21]

L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262.  doi: 10.1016/0022-247X(79)90192-6.  Google Scholar

[22]

F. J. MengJ. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 469 (2019), 1045-1069.  doi: 10.1016/j.jmaa.2018.09.050.  Google Scholar

[23]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete. Contin. Dyn. Syst. Ser. B, 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.  Google Scholar

[24]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[25]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[26]

I. Perai, Multiplicity of Solutions for the $p$-Laplacian, 1997. Google Scholar

[27]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[28]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin.Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[29]

M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[30]

J. Simon, Régularité de la solution d'une équation non linéaire dans ${{\mathbf{R}}^{N}}$, Journées d'Analyse Non Linéaire, Lecture Notes in Math., Springer, Berlin, 665 (1978), 205–227.  Google Scholar

[31]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pure Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[32]

R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. AMS, Providence, RI, 1997.  Google Scholar

[33]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse Math., 8 (1999), 173-193.  doi: 10.5802/afst.928.  Google Scholar

[36]

S. Woinowsky-Krieger, The efect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.   Google Scholar

[37]

L. Yang and X. Wang, Existence of attractors for the non-autonomous Berger equation with nonlinear damping, Electron. J. Differential Equations, (2017), 14 pp.  Google Scholar

[38]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254.  doi: 10.1016/j.jmaa.2007.06.011.  Google Scholar

[39]

Z. J. Yang, On an extensible beam equation with nonlinear damping and source terms, J.Dierential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (200)
  • HTML views (215)
  • Cited by (1)

Other articles
by authors

[Back to Top]