• Previous Article
    On the threshold dynamics of the stochastic SIRS epidemic model using adequate stopping times
  • DCDS-B Home
  • This Issue
  • Next Article
    Instability of the standing waves for a Benney-Roskes/Zakharov-Rubenchik system and blow-up for the zakharov equations
doi: 10.3934/dcdsb.2019197

The global attractor for a class of extensible beams with nonlocal weak damping

Department of Mathematics, Nanjing University, Nanjing, 210093, China

* Corresponding author: Chengkui Zhong

Received  January 2019 Published  September 2019

Fund Project: This work is partly supported by the NSFC (11731005, 11801228) and Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19-0027)

The goal of this paper is to study the long-time behavior of a class of extensible beams equation with the nonlocal weak damping
$ \begin{eqnarray*} u_{tt}+\Delta^2 u-m(\|\nabla u\|^2)\Delta u +\| u_t\|^{p}u_t+f(u) = h, \rm{in}\; \Omega\times\mathbb{R^{+}}, p\geq0 \end{eqnarray*} $
on a bounded smooth domain
$ \Omega\subset\mathbb{R}^{n} $
with hinged (clamped) boundary condition. Under some suitable conditions on the Kirchhoff coefficient
$ m(\|\nabla u\|^2) $
and the nonlinear term
$ f(u) $
, the well-posedness is established by means of the monotone operator theory and the existence of a global attractor is obtained in the subcritical case, where the asymptotic smooothness of the semigroup is verified by the energy reconstruction method.
Citation: Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019197
References:
[1]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Appl. Anal., 55 (1994), 61-78.  doi: 10.1080/00036819408840290.  Google Scholar

[2]

E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness, regularity and stability, Applicable Anal., 13 (1982), 219-233.  doi: 10.1080/00036818208839392.  Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.  Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986), 839-842.  doi: 10.1016/0362-546X(86)90071-4.  Google Scholar

[7]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces., Noordhoff International Publishing, Leiden, 1976,352 pp.  Google Scholar

[8]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.  Google Scholar

[9]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. 436 pp.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math.Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659-674.  doi: 10.3934/cpaa.2012.11.659.  Google Scholar

[12]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060.  doi: 10.3934/dcds.2009.25.1041.  Google Scholar

[13]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J.Math. Anal.Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[14]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.  Google Scholar

[15]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167-175.  doi: 10.1007/BF01602658.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. AMS, Providence, RI, 1988.  Google Scholar

[17]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092.   Google Scholar

[18]

J.-L. Lions, On some questions in boundary value problems in mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, North-Holland, Amsterdam-New York, 30 (1978), 284–346.  Google Scholar

[19]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.   Google Scholar

[20]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.  Google Scholar

[21]

L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262.  doi: 10.1016/0022-247X(79)90192-6.  Google Scholar

[22]

F. J. MengJ. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 469 (2019), 1045-1069.  doi: 10.1016/j.jmaa.2018.09.050.  Google Scholar

[23]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete. Contin. Dyn. Syst. Ser. B, 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.  Google Scholar

[24]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[25]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[26]

I. Perai, Multiplicity of Solutions for the $p$-Laplacian, 1997. Google Scholar

[27]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[28]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin.Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[29]

M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[30]

J. Simon, Régularité de la solution d'une équation non linéaire dans ${{\mathbf{R}}^{N}}$, Journées d'Analyse Non Linéaire, Lecture Notes in Math., Springer, Berlin, 665 (1978), 205–227.  Google Scholar

[31]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pure Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[32]

R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. AMS, Providence, RI, 1997.  Google Scholar

[33]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse Math., 8 (1999), 173-193.  doi: 10.5802/afst.928.  Google Scholar

[36]

S. Woinowsky-Krieger, The efect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.   Google Scholar

[37]

L. Yang and X. Wang, Existence of attractors for the non-autonomous Berger equation with nonlinear damping, Electron. J. Differential Equations, (2017), 14 pp.  Google Scholar

[38]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254.  doi: 10.1016/j.jmaa.2007.06.011.  Google Scholar

[39]

Z. J. Yang, On an extensible beam equation with nonlinear damping and source terms, J.Dierential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.  Google Scholar

show all references

References:
[1]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Appl. Anal., 55 (1994), 61-78.  doi: 10.1080/00036819408840290.  Google Scholar

[2]

E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness, regularity and stability, Applicable Anal., 13 (1982), 219-233.  doi: 10.1080/00036818208839392.  Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.  Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986), 839-842.  doi: 10.1016/0362-546X(86)90071-4.  Google Scholar

[7]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces., Noordhoff International Publishing, Leiden, 1976,352 pp.  Google Scholar

[8]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.  Google Scholar

[9]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. 436 pp.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math.Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659-674.  doi: 10.3934/cpaa.2012.11.659.  Google Scholar

[12]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060.  doi: 10.3934/dcds.2009.25.1041.  Google Scholar

[13]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J.Math. Anal.Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[14]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.  Google Scholar

[15]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167-175.  doi: 10.1007/BF01602658.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. AMS, Providence, RI, 1988.  Google Scholar

[17]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092.   Google Scholar

[18]

J.-L. Lions, On some questions in boundary value problems in mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, North-Holland, Amsterdam-New York, 30 (1978), 284–346.  Google Scholar

[19]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.   Google Scholar

[20]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.  Google Scholar

[21]

L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262.  doi: 10.1016/0022-247X(79)90192-6.  Google Scholar

[22]

F. J. MengJ. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 469 (2019), 1045-1069.  doi: 10.1016/j.jmaa.2018.09.050.  Google Scholar

[23]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete. Contin. Dyn. Syst. Ser. B, 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.  Google Scholar

[24]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[25]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[26]

I. Perai, Multiplicity of Solutions for the $p$-Laplacian, 1997. Google Scholar

[27]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[28]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin.Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[29]

M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[30]

J. Simon, Régularité de la solution d'une équation non linéaire dans ${{\mathbf{R}}^{N}}$, Journées d'Analyse Non Linéaire, Lecture Notes in Math., Springer, Berlin, 665 (1978), 205–227.  Google Scholar

[31]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pure Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[32]

R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. AMS, Providence, RI, 1997.  Google Scholar

[33]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse Math., 8 (1999), 173-193.  doi: 10.5802/afst.928.  Google Scholar

[36]

S. Woinowsky-Krieger, The efect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.   Google Scholar

[37]

L. Yang and X. Wang, Existence of attractors for the non-autonomous Berger equation with nonlinear damping, Electron. J. Differential Equations, (2017), 14 pp.  Google Scholar

[38]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254.  doi: 10.1016/j.jmaa.2007.06.011.  Google Scholar

[39]

Z. J. Yang, On an extensible beam equation with nonlinear damping and source terms, J.Dierential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.  Google Scholar

[1]

Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261

[2]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[3]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations & Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[4]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[5]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[6]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[7]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[8]

Marcio A. Jorge Silva, Vando Narciso, André Vicente. On a beam model related to flight structures with nonlocal energy damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3281-3298. doi: 10.3934/dcdsb.2018320

[9]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[10]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[11]

Alessia Berti, Maria Grazia Naso. Vibrations of a damped extensible beam between two stops. Evolution Equations & Control Theory, 2013, 2 (1) : 35-54. doi: 10.3934/eect.2013.2.35

[12]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[13]

Wenru Huo, Aimin Huang. The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2531-2550. doi: 10.3934/dcdsb.2016059

[14]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[15]

Marcio Antonio Jorge da Silva, Vando Narciso. Attractors and their properties for a class of nonlocal extensible beams. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 985-1008. doi: 10.3934/dcds.2015.35.985

[16]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[17]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[18]

Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587

[19]

Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control & Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035

[20]

Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 857-864. doi: 10.3934/dcdss.2012.5.857

2018 Impact Factor: 1.008

Article outline

[Back to Top]