-
Previous Article
Chaotic cuttlesh: king of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form
- DCDS-B Home
- This Issue
-
Next Article
Global existence for a two-phase flow model with cross-diffusion
Spreading speed of a degenerate and cooperative epidemic model with free boundaries
1. | School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, China |
2. | School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia |
This paper deals with the spreading speed of the disease described by a partially degenerate and cooperative epidemic model with free boundaries. We show that the spreading speed is determined by a semi-wave problem. To find such a semi-wave solution, we prove the existence of a monotone solution to a reduced ODE by an upper and lower solution approach. And then we establish the uniqueness of the semi-wave solution via the sliding method. It is demonstrated that the precise asymptotic spreading speed is less than the minimal speed of traveling waves.
References:
[1] |
I. Ahn, S. Beak and Z. Lin,
The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 40 (2016), 7082-7101.
doi: 10.1016/j.apm.2016.02.038. |
[2] |
G. Bunting, Y. Du and K. Krakowski,
Spreading speed revisited: analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
doi: 10.3934/nhm.2012.7.583. |
[3] |
V. Capasso and L. Maddalena,
Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981/82), 173-184.
doi: 10.1007/BF00275212. |
[4] |
V. Capasso and S. L. Paveri-Fontana,
A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. d'Epidemiol. Sante Publique, 27 (1979), 32-121.
|
[5] |
E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. |
[6] |
Y. Du, Z. Guo and R. Peng,
A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.
doi: 10.1016/j.jfa.2013.07.016. |
[7] |
Y. Du and Z. Lin,
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/110822608. |
[8] |
Y. Du and Z. Lin,
The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.
doi: 10.3934/dcdsb.2014.19.3105. |
[9] |
Y. Du and B. Lou,
Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.
doi: 10.4171/JEMS/568. |
[10] |
Y. Du, H. Matsuzawa and M. Zhou,
Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.
doi: 10.1137/130908063. |
[11] |
Y. Du, M. Wang and M. Zhou,
Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 107 (2017), 253-287.
doi: 10.1016/j.matpur.2016.06.005. |
[12] |
Y. Du and C. H. Wu, Spreading with two speeds and mass segregation in a diffusive competition system with free boundaries, Calc. Var. Partial Differential Equations, 57 (2018), Art. 52, 36 pp.
doi: 10.1007/s00526-018-1339-5. |
[13] |
J. Ge, K. I. Kim, Z. Lin and H. Zhu,
A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.
doi: 10.1016/j.jde.2015.06.035. |
[14] |
H. Gu, B. Lou and M. Zhou,
Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.
doi: 10.1016/j.jfa.2015.07.002. |
[15] |
J. S. Guo and C. H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[16] |
K. I. Kim, Z. Lin and Q. Zhang,
An SIR epidemic model with free boundary, Nonlinear Anal. Real World Appl., 14 (2013), 1992-2001.
doi: 10.1016/j.nonrwa.2013.02.003. |
[17] |
Z. Lin,
A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
doi: 10.1088/0951-7715/20/8/004. |
[18] |
Z. Lin and H. Zhu,
Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.
doi: 10.1007/s00285-017-1124-7. |
[19] |
J. Wang and L. Zhang,
Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398.
doi: 10.1016/j.jmaa.2014.09.055. |
[20] |
M. Wang,
On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.
doi: 10.1016/j.jde.2014.02.013. |
[21] |
M. Wang and J. Zhao,
Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.
doi: 10.1007/s10884-014-9363-4. |
[22] |
M. Wang and J. Zhao,
A free boundary problem for the predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.
doi: 10.1007/s10884-015-9503-5. |
[23] |
M. Wang and Y. Zhang,
Dynamics for a diffusive prey-predator model with different free boundaries, J. Differential Equations, 264 (2018), 3527-3558.
doi: 10.1016/j.jde.2017.11.027. |
[24] |
Z. Wang, H. Nie and Y. Du,
Asymptotic spreading speed for the weak competition system with a free boundary, Discrete Contin. Dyn. Syst., 39 (2019), 5223-5262.
doi: 10.3934/dcds.2019213. |
[25] |
Z. Wang, H. Nie and Y. Du,
Spreading speed for a West Nile virus model with free boundary, J. Math. Biol., 79 (2019), 433-466.
doi: 10.1007/s00285-019-01363-2. |
[26] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[27] |
X. Q. Zhao and W. Wang,
Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.
doi: 10.3934/dcdsb.2004.4.1117. |
show all references
References:
[1] |
I. Ahn, S. Beak and Z. Lin,
The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 40 (2016), 7082-7101.
doi: 10.1016/j.apm.2016.02.038. |
[2] |
G. Bunting, Y. Du and K. Krakowski,
Spreading speed revisited: analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
doi: 10.3934/nhm.2012.7.583. |
[3] |
V. Capasso and L. Maddalena,
Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981/82), 173-184.
doi: 10.1007/BF00275212. |
[4] |
V. Capasso and S. L. Paveri-Fontana,
A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. d'Epidemiol. Sante Publique, 27 (1979), 32-121.
|
[5] |
E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. |
[6] |
Y. Du, Z. Guo and R. Peng,
A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.
doi: 10.1016/j.jfa.2013.07.016. |
[7] |
Y. Du and Z. Lin,
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/110822608. |
[8] |
Y. Du and Z. Lin,
The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.
doi: 10.3934/dcdsb.2014.19.3105. |
[9] |
Y. Du and B. Lou,
Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.
doi: 10.4171/JEMS/568. |
[10] |
Y. Du, H. Matsuzawa and M. Zhou,
Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.
doi: 10.1137/130908063. |
[11] |
Y. Du, M. Wang and M. Zhou,
Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 107 (2017), 253-287.
doi: 10.1016/j.matpur.2016.06.005. |
[12] |
Y. Du and C. H. Wu, Spreading with two speeds and mass segregation in a diffusive competition system with free boundaries, Calc. Var. Partial Differential Equations, 57 (2018), Art. 52, 36 pp.
doi: 10.1007/s00526-018-1339-5. |
[13] |
J. Ge, K. I. Kim, Z. Lin and H. Zhu,
A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.
doi: 10.1016/j.jde.2015.06.035. |
[14] |
H. Gu, B. Lou and M. Zhou,
Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.
doi: 10.1016/j.jfa.2015.07.002. |
[15] |
J. S. Guo and C. H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[16] |
K. I. Kim, Z. Lin and Q. Zhang,
An SIR epidemic model with free boundary, Nonlinear Anal. Real World Appl., 14 (2013), 1992-2001.
doi: 10.1016/j.nonrwa.2013.02.003. |
[17] |
Z. Lin,
A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
doi: 10.1088/0951-7715/20/8/004. |
[18] |
Z. Lin and H. Zhu,
Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.
doi: 10.1007/s00285-017-1124-7. |
[19] |
J. Wang and L. Zhang,
Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398.
doi: 10.1016/j.jmaa.2014.09.055. |
[20] |
M. Wang,
On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.
doi: 10.1016/j.jde.2014.02.013. |
[21] |
M. Wang and J. Zhao,
Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.
doi: 10.1007/s10884-014-9363-4. |
[22] |
M. Wang and J. Zhao,
A free boundary problem for the predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.
doi: 10.1007/s10884-015-9503-5. |
[23] |
M. Wang and Y. Zhang,
Dynamics for a diffusive prey-predator model with different free boundaries, J. Differential Equations, 264 (2018), 3527-3558.
doi: 10.1016/j.jde.2017.11.027. |
[24] |
Z. Wang, H. Nie and Y. Du,
Asymptotic spreading speed for the weak competition system with a free boundary, Discrete Contin. Dyn. Syst., 39 (2019), 5223-5262.
doi: 10.3934/dcds.2019213. |
[25] |
Z. Wang, H. Nie and Y. Du,
Spreading speed for a West Nile virus model with free boundary, J. Math. Biol., 79 (2019), 433-466.
doi: 10.1007/s00285-019-01363-2. |
[26] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[27] |
X. Q. Zhao and W. Wang,
Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.
doi: 10.3934/dcdsb.2004.4.1117. |
[1] |
Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213 |
[2] |
Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 |
[3] |
Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 |
[4] |
Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 |
[5] |
Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087 |
[6] |
Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210 |
[7] |
Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505 |
[8] |
Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253 |
[9] |
Marcelo Bongarti, Irena Lasiecka, José H. Rodrigues. Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1355-1376. doi: 10.3934/dcdss.2022020 |
[10] |
Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267 |
[11] |
Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121 |
[12] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[13] |
Kamruzzaman Khan, Timothy M. Schaerf, Yihong Du. Effects of environmental heterogeneity on species spreading via numerical analysis of some free boundary models. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022077 |
[14] |
Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045 |
[15] |
Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663 |
[16] |
Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 |
[17] |
Guo Lin, Yahui Wang. Spreading speed in a non-monotonic Ricker competitive integrodifference system. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022108 |
[18] |
Siyu Liu, Haomin Huang, Mingxin Wang. A free boundary problem for a prey-predator model with degenerate diffusion and predator-stage structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1649-1670. doi: 10.3934/dcdsb.2019245 |
[19] |
J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133 |
[20] |
Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]