• Previous Article
    A two-group age of infection epidemic model with periodic behavioral changes
  • DCDS-B Home
  • This Issue
  • Next Article
    Poxvirus, red and grey squirrel dynamics: Is the recovery of a common predator affecting system equilibria? Insights from a predator-prey ecoepidemic model
June  2020, 25(6): 2041-2056. doi: 10.3934/dcdsb.2019201

Takens–Bogdanov singularity for age structured models

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  January 2019 Revised  March 2019 Published  September 2019

Fund Project: Research was partially supported by NSFC, the Fundamental Research Funds for the Central Universities, and Laboratory of Mathematics and Complex Systems, Ministry of Education

The main purpose of this article is to derive a easily feasible method for the determination of Takens–Bogdanov singularity in age structured models. We present a SIR epidemic model with age structure as an example to illustrate the theoretical results.

Citation: Zhihua Liu, Rong Yuan. Takens–Bogdanov singularity for age structured models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2041-2056. doi: 10.3934/dcdsb.2019201
References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet, 1 (1981), 373-388.   Google Scholar

[3]

R. I. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Funct. Anal. i Priloežn, 9 (1975), 63.   Google Scholar

[4]

J. Z. Cao and R. Yuan, Bogdanov-Takens bifurcation for neutral functional differential equations, Electronic Journal of Differential Equations, 2013 (2013), 12 pp.  Google Scholar

[5]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[6] S.-N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[7]

J. X. ChuA. DucrotP. Magal and S. G. Ruan, Hopf bifurcation in a size structured population dynamic model with random growth, J. Differ. Equ., 247 (2009), 956-1000.  doi: 10.1016/j.jde.2009.04.003.  Google Scholar

[8]

J. X. Chu and P. Magal, Hopf bifurcation for a size structured model with resting phase, Discrete Contin. Dyn. Syst., 33 (2013), 4891-4921.  doi: 10.3934/dcds.2013.33.4891.  Google Scholar

[9]

J. X. ChuP. Magal and R. Yuan, Hopf bifurcation for a maturity structured population dynamic model, J. Nonlinear Sci., 21 (2011), 521-562.  doi: 10.1007/s00332-010-9091-9.  Google Scholar

[10]

J. M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.  Google Scholar

[11]

A. DucrotZ. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518.  doi: 10.1016/j.jmaa.2007.09.074.  Google Scholar

[12]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals, Lecture Notes in Math, 1480, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0098353.  Google Scholar

[13]

T. Faria, Bifurcation aspects for some delayed population models with diffusion, in Differential Equations with Applications to Biology, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 21 (1999), 143–158.  Google Scholar

[14]

T. Faria, Normal form and Hopf bifurcation for partial differential equations with delays, Transactions of the American Mathematical Society, 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[15]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[16]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[17]

J. K. Hale, L. T. Magalh$\widetilde{a}$es and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Math. Sciences, 47, Springer-Verlag, New York, 2002. doi: 10.1007/b100032.  Google Scholar

[18]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monographs C. N. R., Vol. 7, Giadini Editori e Stampatori, Pisa, 1994. Google Scholar

[19]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.  Google Scholar

[20]

W. M. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.  Google Scholar

[21]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.  Google Scholar

[22]

Z. H. Liu and N. W. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.  Google Scholar

[23]

Z. H. LiuP. Magal and S. G. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Zeitschrift fur Angewandte Mathematik und Physik, 62 (2011), 191-222.  doi: 10.1007/s00033-010-0088-x.  Google Scholar

[24]

Z. H. LiuP. Magal and S. G. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011.  doi: 10.1016/j.jde.2014.04.018.  Google Scholar

[25]

Z. H. LiuP. Magal and S. G. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 537-555.  doi: 10.3934/dcdsb.2016.21.537.  Google Scholar

[26]

Z. H. Liu, P. Magal and D. M. Xiao, Bogdanov-Takens bifurcation in a predator-prey model, Zeitschrift fur Angewandte Mathematik und Physik, 67 (2016), Art. 137, 29 pp. doi: 10.1007/s00033-016-0724-1.  Google Scholar

[27]

Z. H. Liu and R. Yuan, Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate, Science China Mathematics, 60 (2017), 1371-1398.  doi: 10.1007/s11425-016-0371-8.  Google Scholar

[28]

Z. H. Liu and R. Yuan, The effect of diffusion for a predator-prey system with nonmonotonic functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 4309-4316.  doi: 10.1142/S0218127404011867.  Google Scholar

[29]

P. Magal and S. G. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009).  doi: 10.1090/S0065-9266-09-00568-7.  Google Scholar

[30]

F. Takens, Forced oscillations and bifurcations, Comm. Math. Inst. Rijksuniv. Utrecht, Math. Inst. Rijksuniv. Utrecht, Utrecht, (1974), 1-59.   Google Scholar

[31]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., (1974), 47-100.   Google Scholar

[32]

H. Tang and Z. H. Liu, Hopf bifurcation for a predator-prey model with age structure, Applied Mathematical Modelling, 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.  Google Scholar

[33]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066.   Google Scholar

[34]

H. R. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem, J. Evol. Equ., 8 (2008), 283-305.  doi: 10.1007/s00028-007-0355-2.  Google Scholar

[35]

H. R. Thieme, "Integrated semigroups" and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416-447.  doi: 10.1016/0022-247X(90)90074-P.  Google Scholar

[36]

Z. Wang and Z. H. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150.  doi: 10.1016/j.jmaa.2011.07.038.  Google Scholar

[37]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.  Google Scholar

[38]

Y. X. Xu and M. Y. Huang, Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Differential Equations, 244 (2008), 582-598.  doi: 10.1016/j.jde.2007.09.003.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet, 1 (1981), 373-388.   Google Scholar

[3]

R. I. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Funct. Anal. i Priloežn, 9 (1975), 63.   Google Scholar

[4]

J. Z. Cao and R. Yuan, Bogdanov-Takens bifurcation for neutral functional differential equations, Electronic Journal of Differential Equations, 2013 (2013), 12 pp.  Google Scholar

[5]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[6] S.-N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[7]

J. X. ChuA. DucrotP. Magal and S. G. Ruan, Hopf bifurcation in a size structured population dynamic model with random growth, J. Differ. Equ., 247 (2009), 956-1000.  doi: 10.1016/j.jde.2009.04.003.  Google Scholar

[8]

J. X. Chu and P. Magal, Hopf bifurcation for a size structured model with resting phase, Discrete Contin. Dyn. Syst., 33 (2013), 4891-4921.  doi: 10.3934/dcds.2013.33.4891.  Google Scholar

[9]

J. X. ChuP. Magal and R. Yuan, Hopf bifurcation for a maturity structured population dynamic model, J. Nonlinear Sci., 21 (2011), 521-562.  doi: 10.1007/s00332-010-9091-9.  Google Scholar

[10]

J. M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.  Google Scholar

[11]

A. DucrotZ. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518.  doi: 10.1016/j.jmaa.2007.09.074.  Google Scholar

[12]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals, Lecture Notes in Math, 1480, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0098353.  Google Scholar

[13]

T. Faria, Bifurcation aspects for some delayed population models with diffusion, in Differential Equations with Applications to Biology, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 21 (1999), 143–158.  Google Scholar

[14]

T. Faria, Normal form and Hopf bifurcation for partial differential equations with delays, Transactions of the American Mathematical Society, 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[15]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[16]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[17]

J. K. Hale, L. T. Magalh$\widetilde{a}$es and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Math. Sciences, 47, Springer-Verlag, New York, 2002. doi: 10.1007/b100032.  Google Scholar

[18]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monographs C. N. R., Vol. 7, Giadini Editori e Stampatori, Pisa, 1994. Google Scholar

[19]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.  Google Scholar

[20]

W. M. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.  Google Scholar

[21]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.  Google Scholar

[22]

Z. H. Liu and N. W. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.  Google Scholar

[23]

Z. H. LiuP. Magal and S. G. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Zeitschrift fur Angewandte Mathematik und Physik, 62 (2011), 191-222.  doi: 10.1007/s00033-010-0088-x.  Google Scholar

[24]

Z. H. LiuP. Magal and S. G. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011.  doi: 10.1016/j.jde.2014.04.018.  Google Scholar

[25]

Z. H. LiuP. Magal and S. G. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 537-555.  doi: 10.3934/dcdsb.2016.21.537.  Google Scholar

[26]

Z. H. Liu, P. Magal and D. M. Xiao, Bogdanov-Takens bifurcation in a predator-prey model, Zeitschrift fur Angewandte Mathematik und Physik, 67 (2016), Art. 137, 29 pp. doi: 10.1007/s00033-016-0724-1.  Google Scholar

[27]

Z. H. Liu and R. Yuan, Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate, Science China Mathematics, 60 (2017), 1371-1398.  doi: 10.1007/s11425-016-0371-8.  Google Scholar

[28]

Z. H. Liu and R. Yuan, The effect of diffusion for a predator-prey system with nonmonotonic functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 4309-4316.  doi: 10.1142/S0218127404011867.  Google Scholar

[29]

P. Magal and S. G. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009).  doi: 10.1090/S0065-9266-09-00568-7.  Google Scholar

[30]

F. Takens, Forced oscillations and bifurcations, Comm. Math. Inst. Rijksuniv. Utrecht, Math. Inst. Rijksuniv. Utrecht, Utrecht, (1974), 1-59.   Google Scholar

[31]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., (1974), 47-100.   Google Scholar

[32]

H. Tang and Z. H. Liu, Hopf bifurcation for a predator-prey model with age structure, Applied Mathematical Modelling, 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.  Google Scholar

[33]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066.   Google Scholar

[34]

H. R. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem, J. Evol. Equ., 8 (2008), 283-305.  doi: 10.1007/s00028-007-0355-2.  Google Scholar

[35]

H. R. Thieme, "Integrated semigroups" and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416-447.  doi: 10.1016/0022-247X(90)90074-P.  Google Scholar

[36]

Z. Wang and Z. H. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150.  doi: 10.1016/j.jmaa.2011.07.038.  Google Scholar

[37]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.  Google Scholar

[38]

Y. X. Xu and M. Y. Huang, Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Differential Equations, 244 (2008), 582-598.  doi: 10.1016/j.jde.2007.09.003.  Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[9]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[10]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[11]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[12]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[13]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (313)
  • HTML views (338)
  • Cited by (0)

Other articles
by authors

[Back to Top]