• Previous Article
    A two-group age of infection epidemic model with periodic behavioral changes
  • DCDS-B Home
  • This Issue
  • Next Article
    Poxvirus, red and grey squirrel dynamics: Is the recovery of a common predator affecting system equilibria? Insights from a predator-prey ecoepidemic model
June  2020, 25(6): 2041-2056. doi: 10.3934/dcdsb.2019201

Takens–Bogdanov singularity for age structured models

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  January 2019 Revised  March 2019 Published  September 2019

Fund Project: Research was partially supported by NSFC, the Fundamental Research Funds for the Central Universities, and Laboratory of Mathematics and Complex Systems, Ministry of Education

The main purpose of this article is to derive a easily feasible method for the determination of Takens–Bogdanov singularity in age structured models. We present a SIR epidemic model with age structure as an example to illustrate the theoretical results.

Citation: Zhihua Liu, Rong Yuan. Takens–Bogdanov singularity for age structured models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2041-2056. doi: 10.3934/dcdsb.2019201
References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet, 1 (1981), 373-388.   Google Scholar

[3]

R. I. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Funct. Anal. i Priloežn, 9 (1975), 63.   Google Scholar

[4]

J. Z. Cao and R. Yuan, Bogdanov-Takens bifurcation for neutral functional differential equations, Electronic Journal of Differential Equations, 2013 (2013), 12 pp.  Google Scholar

[5]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[6] S.-N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[7]

J. X. ChuA. DucrotP. Magal and S. G. Ruan, Hopf bifurcation in a size structured population dynamic model with random growth, J. Differ. Equ., 247 (2009), 956-1000.  doi: 10.1016/j.jde.2009.04.003.  Google Scholar

[8]

J. X. Chu and P. Magal, Hopf bifurcation for a size structured model with resting phase, Discrete Contin. Dyn. Syst., 33 (2013), 4891-4921.  doi: 10.3934/dcds.2013.33.4891.  Google Scholar

[9]

J. X. ChuP. Magal and R. Yuan, Hopf bifurcation for a maturity structured population dynamic model, J. Nonlinear Sci., 21 (2011), 521-562.  doi: 10.1007/s00332-010-9091-9.  Google Scholar

[10]

J. M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.  Google Scholar

[11]

A. DucrotZ. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518.  doi: 10.1016/j.jmaa.2007.09.074.  Google Scholar

[12]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals, Lecture Notes in Math, 1480, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0098353.  Google Scholar

[13]

T. Faria, Bifurcation aspects for some delayed population models with diffusion, in Differential Equations with Applications to Biology, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 21 (1999), 143–158.  Google Scholar

[14]

T. Faria, Normal form and Hopf bifurcation for partial differential equations with delays, Transactions of the American Mathematical Society, 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[15]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[16]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[17]

J. K. Hale, L. T. Magalh$\widetilde{a}$es and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Math. Sciences, 47, Springer-Verlag, New York, 2002. doi: 10.1007/b100032.  Google Scholar

[18]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monographs C. N. R., Vol. 7, Giadini Editori e Stampatori, Pisa, 1994. Google Scholar

[19]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.  Google Scholar

[20]

W. M. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.  Google Scholar

[21]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.  Google Scholar

[22]

Z. H. Liu and N. W. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.  Google Scholar

[23]

Z. H. LiuP. Magal and S. G. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Zeitschrift fur Angewandte Mathematik und Physik, 62 (2011), 191-222.  doi: 10.1007/s00033-010-0088-x.  Google Scholar

[24]

Z. H. LiuP. Magal and S. G. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011.  doi: 10.1016/j.jde.2014.04.018.  Google Scholar

[25]

Z. H. LiuP. Magal and S. G. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 537-555.  doi: 10.3934/dcdsb.2016.21.537.  Google Scholar

[26]

Z. H. Liu, P. Magal and D. M. Xiao, Bogdanov-Takens bifurcation in a predator-prey model, Zeitschrift fur Angewandte Mathematik und Physik, 67 (2016), Art. 137, 29 pp. doi: 10.1007/s00033-016-0724-1.  Google Scholar

[27]

Z. H. Liu and R. Yuan, Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate, Science China Mathematics, 60 (2017), 1371-1398.  doi: 10.1007/s11425-016-0371-8.  Google Scholar

[28]

Z. H. Liu and R. Yuan, The effect of diffusion for a predator-prey system with nonmonotonic functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 4309-4316.  doi: 10.1142/S0218127404011867.  Google Scholar

[29]

P. Magal and S. G. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009).  doi: 10.1090/S0065-9266-09-00568-7.  Google Scholar

[30]

F. Takens, Forced oscillations and bifurcations, Comm. Math. Inst. Rijksuniv. Utrecht, Math. Inst. Rijksuniv. Utrecht, Utrecht, (1974), 1-59.   Google Scholar

[31]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., (1974), 47-100.   Google Scholar

[32]

H. Tang and Z. H. Liu, Hopf bifurcation for a predator-prey model with age structure, Applied Mathematical Modelling, 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.  Google Scholar

[33]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066.   Google Scholar

[34]

H. R. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem, J. Evol. Equ., 8 (2008), 283-305.  doi: 10.1007/s00028-007-0355-2.  Google Scholar

[35]

H. R. Thieme, "Integrated semigroups" and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416-447.  doi: 10.1016/0022-247X(90)90074-P.  Google Scholar

[36]

Z. Wang and Z. H. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150.  doi: 10.1016/j.jmaa.2011.07.038.  Google Scholar

[37]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.  Google Scholar

[38]

Y. X. Xu and M. Y. Huang, Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Differential Equations, 244 (2008), 582-598.  doi: 10.1016/j.jde.2007.09.003.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet, 1 (1981), 373-388.   Google Scholar

[3]

R. I. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Funct. Anal. i Priloežn, 9 (1975), 63.   Google Scholar

[4]

J. Z. Cao and R. Yuan, Bogdanov-Takens bifurcation for neutral functional differential equations, Electronic Journal of Differential Equations, 2013 (2013), 12 pp.  Google Scholar

[5]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[6] S.-N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[7]

J. X. ChuA. DucrotP. Magal and S. G. Ruan, Hopf bifurcation in a size structured population dynamic model with random growth, J. Differ. Equ., 247 (2009), 956-1000.  doi: 10.1016/j.jde.2009.04.003.  Google Scholar

[8]

J. X. Chu and P. Magal, Hopf bifurcation for a size structured model with resting phase, Discrete Contin. Dyn. Syst., 33 (2013), 4891-4921.  doi: 10.3934/dcds.2013.33.4891.  Google Scholar

[9]

J. X. ChuP. Magal and R. Yuan, Hopf bifurcation for a maturity structured population dynamic model, J. Nonlinear Sci., 21 (2011), 521-562.  doi: 10.1007/s00332-010-9091-9.  Google Scholar

[10]

J. M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.  Google Scholar

[11]

A. DucrotZ. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518.  doi: 10.1016/j.jmaa.2007.09.074.  Google Scholar

[12]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals, Lecture Notes in Math, 1480, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0098353.  Google Scholar

[13]

T. Faria, Bifurcation aspects for some delayed population models with diffusion, in Differential Equations with Applications to Biology, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 21 (1999), 143–158.  Google Scholar

[14]

T. Faria, Normal form and Hopf bifurcation for partial differential equations with delays, Transactions of the American Mathematical Society, 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[15]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[16]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[17]

J. K. Hale, L. T. Magalh$\widetilde{a}$es and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Math. Sciences, 47, Springer-Verlag, New York, 2002. doi: 10.1007/b100032.  Google Scholar

[18]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monographs C. N. R., Vol. 7, Giadini Editori e Stampatori, Pisa, 1994. Google Scholar

[19]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.  Google Scholar

[20]

W. M. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.  Google Scholar

[21]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.  Google Scholar

[22]

Z. H. Liu and N. W. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci., 25 (2015), 937-957.  doi: 10.1007/s00332-015-9245-x.  Google Scholar

[23]

Z. H. LiuP. Magal and S. G. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Zeitschrift fur Angewandte Mathematik und Physik, 62 (2011), 191-222.  doi: 10.1007/s00033-010-0088-x.  Google Scholar

[24]

Z. H. LiuP. Magal and S. G. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011.  doi: 10.1016/j.jde.2014.04.018.  Google Scholar

[25]

Z. H. LiuP. Magal and S. G. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 537-555.  doi: 10.3934/dcdsb.2016.21.537.  Google Scholar

[26]

Z. H. Liu, P. Magal and D. M. Xiao, Bogdanov-Takens bifurcation in a predator-prey model, Zeitschrift fur Angewandte Mathematik und Physik, 67 (2016), Art. 137, 29 pp. doi: 10.1007/s00033-016-0724-1.  Google Scholar

[27]

Z. H. Liu and R. Yuan, Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate, Science China Mathematics, 60 (2017), 1371-1398.  doi: 10.1007/s11425-016-0371-8.  Google Scholar

[28]

Z. H. Liu and R. Yuan, The effect of diffusion for a predator-prey system with nonmonotonic functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 4309-4316.  doi: 10.1142/S0218127404011867.  Google Scholar

[29]

P. Magal and S. G. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009).  doi: 10.1090/S0065-9266-09-00568-7.  Google Scholar

[30]

F. Takens, Forced oscillations and bifurcations, Comm. Math. Inst. Rijksuniv. Utrecht, Math. Inst. Rijksuniv. Utrecht, Utrecht, (1974), 1-59.   Google Scholar

[31]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., (1974), 47-100.   Google Scholar

[32]

H. Tang and Z. H. Liu, Hopf bifurcation for a predator-prey model with age structure, Applied Mathematical Modelling, 40 (2016), 726-737.  doi: 10.1016/j.apm.2015.09.015.  Google Scholar

[33]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066.   Google Scholar

[34]

H. R. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem, J. Evol. Equ., 8 (2008), 283-305.  doi: 10.1007/s00028-007-0355-2.  Google Scholar

[35]

H. R. Thieme, "Integrated semigroups" and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416-447.  doi: 10.1016/0022-247X(90)90074-P.  Google Scholar

[36]

Z. Wang and Z. H. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150.  doi: 10.1016/j.jmaa.2011.07.038.  Google Scholar

[37]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.  Google Scholar

[38]

Y. X. Xu and M. Y. Huang, Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Differential Equations, 244 (2008), 582-598.  doi: 10.1016/j.jde.2007.09.003.  Google Scholar

[1]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[2]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[3]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[4]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[5]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[6]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[7]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[8]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[9]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[10]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[11]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[12]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[13]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[14]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[15]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[16]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[17]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[18]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[19]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[20]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (368)
  • HTML views (377)
  • Cited by (0)

Other articles
by authors

[Back to Top]