[1]
|
N. Abdellatif, R. Fekih-Salem and T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Mathematical Biosciences and Engineering, 13 (2016), 631-652.
doi: 10.3934/mbe.2016012.
|
[2]
|
M. J. De Freitas and A. G. Fredrickson, Inhibition as a factor in the maintenance of the diversity of microbial ecosystems, Journal of General Microbiology, 106 (1978), 307-320.
doi: 10.1099/00221287-106-2-307.
|
[3]
|
P. de Leenheer, B. T. Li and H. L. Smith, Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, 11 (2003), 229-248.
|
[4]
|
M. Dellal, M. Lakrib and T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Mathematical Biosciences, 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004.
|
[5]
|
R. Fekih-Salem, C. Lobry and T. Sari, A density-dependent model of competition for one resource in the chemostat, Mathematical Biosciences, 286 (2017), 104-122.
doi: 10.1016/j.mbs.2017.02.007.
|
[6]
|
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, Chemostat and bioprocesses set. Vol. 1. ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ, 2017.
|
[7]
|
P. A. Hoskisson and G. Hobbs, Continuous culture-making a comeback?, Microbiology, 151 (2005), 3153-3159.
doi: 10.1099/mic.0.27924-0.
|
[8]
|
S. B. Hsu, S. Hubbell and P. Waltman, A mathematical model for single nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.
doi: 10.1137/0132030.
|
[9]
|
S. B. Hsu, Y.-S. Li and P. Waltman, Competition in the presence of a lethal external inhibitor, Mathematical Biosciences, 167 (2000), 177-199.
doi: 10.1016/S0025-5564(00)00030-4.
|
[10]
|
S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM Journal on Applied Mathematics, 52 (1992), 528-540.
doi: 10.1137/0152029.
|
[11]
|
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Mathematical Biosciences, 187 (2004), 53-91.
doi: 10.1016/j.mbs.2003.07.004.
|
[12]
|
W. S. Keeran, P. de Leenheer and S. S. Pilyugin, Feedback-mediated coexistence and oscillations in the chemostat, Discrete and Continuous Dynamical Systems-B, 9 (2008), 321-351.
doi: 10.3934/dcdsb.2008.9.321.
|
[13]
|
R. E. Lenski and S. E. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, Journal of Theoretical Biology, 122 (1986), 83-93.
doi: 10.1016/S0022-5193(86)80226-0.
|
[14]
|
B. T. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates, SIAM Journal on Applied Mathematics, 59 (1999), 411-422.
doi: 10.1137/S003613999631100X.
|
[15]
|
J. Q. Li, Z. R. Feng, J. Zhang and J. Lou, A competition model of the chemostat with an external inhibitor, Mathematical Biosciences and Engineering, 3 (2006), 111-123.
doi: 10.3934/mbe.2006.3.111.
|
[16]
|
J. Monod, La technique de culture continue: Théorie et applications, Selected Papers in Molecular Biology by Jacques Monod, (1978), 184-204.
doi: 10.1016/B978-0-12-460482-7.50023-3.
|
[17]
|
S. Pavlou, Computing operating diagrams of bioreactors, Journal of Biotechnology, 71 (1999), 7-16.
doi: 10.1016/S0168-1656(99)00011-5.
|
[18]
|
T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, 8 (2011), 827-840.
doi: 10.3934/mbe.2011.8.827.
|
[19]
|
T. Sari and M. J. Wade, Generalised approach to modelling a three-tiered microbial food-web, Mathematical Biosciences, 291 (2017), 21-37.
doi: 10.1016/j.mbs.2017.07.005.
|
[20]
|
H. Smith and B. Tang, Competition in the gradostat: The role of the communication rate, Journal of Mathematical Biology, 27 (1989), 139-165.
doi: 10.1007/BF00276100.
|
[21]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, 13. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.
|
[22]
|
H. L. Smith and X.-Q. Zhao, Competitive exclusion in a discrete-time, size-structured chemostat model, Discrete and Continuous Dynamical Systems-B, 1 (2001), 183-191.
doi: 10.3934/dcdsb.2001.1.183.
|
[23]
|
D. V. Vayenas and S. Pavlou, Chaotic dynamics of a microbial system of coupled food chains, Ecological Modelling, 136 (2001), 285-295.
doi: 10.1016/S0304-3800(00)00437-3.
|
[24]
|
M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J.-J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry, Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, 321 (2016), 64-74.
doi: 10.1016/j.ecolmodel.2015.11.002.
|
[25]
|
M. J. Wade, R. W. Pattinson, N. G. Parker and J. Dolfing, Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web', Journal of Theoretical Biology, 389 (2016), 171-186.
doi: 10.1016/j.jtbi.2015.10.032.
|
[26]
|
M. Weedermann, G. Seo and G. S. K. Wolkowicz, Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition, Journal of Biological Dynamics, 7 (2013), 59-85.
doi: 10.1080/17513758.2012.755573.
|
[27]
|
G. S. K. Wolkowicz and Z. Q. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, SIAM Journal on Applied Mathematics, 52 (1992), 222-233.
doi: 10.1137/0152012.
|