March  2020, 25(3): 1001-1013. doi: 10.3934/dcdsb.2019205

Chaotic cuttlesh: king of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form

1. 

Centre for Non-Linear Dynamics, Defense University, Ethiopia

2. 

Institute of Energy, Mekelle University, Mekelle, Ethiopia

3. 

Department of Electronic and Automation, Vocational School of Hacibektas, Nevsehir Haci Bektas Veli University, 50800, Hacibektas, Nevsehir, Turkey

4. 

Department of Electrical and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, 54050 Serdivan, Sakarya, Turkey

5. 

Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

* Corresponding author: Akif Akgul

Received  March 2018 Revised  March 2019 Published  September 2019

There are many works on self-excited and hidden attractors. However the relationship between them is less investigated. In this study we present a system which can have both hidden self-excited attractors. Dynamical properties of the chaotic system are studied using the equilibrium points and Eigenvalues analysis, Lyapunov exponents and bifurcation plots. Since fractional order models are more interesting in engineering applications, the fractional order version of the proposed system is derived using Adomian decomposition method. Bifurcation and stability analysis of the fractional order model shows the existence of chaotic oscillations. To demonstrate the engineering importance of the fractional order model, we have designed a digital communication system with SCSK (Symmetric Chaos Shift Keying) modulation method separately for both self-excited attractor and hidden attractor, the bit error rate performance was compared.

Citation: Karthikeyan Rajagopal, Serdar Cicek, Akif Akgul, Sajad Jafari, Anitha Karthikeyan. Chaotic cuttlesh: king of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1001-1013. doi: 10.3934/dcdsb.2019205
References:
[1]

G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathematical and Computer Modelling, 13 (1990), 17-43.  doi: 10.1016/0895-7177(90)90125-7.  Google Scholar

[2]

M. AhmadU. Shamsi and I. R. Khan, An enhanced image encryption algorithm using fractional chaotic systems, Procedia Computer Science, 57 (2015), 852-859.   Google Scholar

[3]

R. Caponetto and S. Fazzino, An application of adomian decomposition for analysis of fractional-order chaotic systems, International Journal of Bifurcation and Chaos, 23 (2013), 1350050, 7pp. doi: 10.1142/S0218127413500508.  Google Scholar

[4]

A. CharefH. H. SunY. Y. Tsao and B. Onaral, Fractal system as represented by singularity function, IEEE Transactions on Automatic Control, 37 (1992), 1465-1470.  doi: 10.1109/9.159595.  Google Scholar

[5]

D. DudkowskiS. JafariT. KapitaniakN. V. KuznetsovG. A. Leonov and A. Prasad, Hidden attractors in dynamical systems, Physics Reports, 637 (2016), 1-50.  doi: 10.1016/j.physrep.2016.05.002.  Google Scholar

[6]

S. HeK. Sun and H. Wang, Complexity analysis and dsp implementation of the fractional-order lorenz hyperchaotic system, Entropy, 17 (2015), 8299-8311.  doi: 10.3390/e17127882.  Google Scholar

[7]

R. C. Hilborn et al., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, The Clarendon Press, Oxford University Press, New York, 1994.  Google Scholar

[8]

M. A. JafariE. MlikiA. AkgulV.-T. PhamS. T. KingniX. Wang and S. Jafari, Chameleon: The most hidden chaotic flow, Nonlinear Dynamics, 88 (2017), 2303-2317.  doi: 10.1007/s11071-017-3378-4.  Google Scholar

[9]

S. T. Kingni, S. Jafari, H. Simo and P. Woafo, Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, The European Physical Journal Plus, 129 (2014), 76. doi: 10.1140/epjp/i2014-14076-4.  Google Scholar

[10]

G. A. LeonovN. V. Kuznetsov and V. I. Vagaitsev, Localization of hidden chuas attractors, Physics Letters A, 375 (2011), 2230-2233.  doi: 10.1016/j.physleta.2011.04.037.  Google Scholar

[11]

G. A. LeonovN. V. Kuznetsov and T. N. Mokaev, Hidden attractor and homoclinic orbit in lorenz-like system describing convective fluid motion in rotating cavity, Communications in Nonlinear Science and Numerical Simulation, 28 (2015), 166-174.  doi: 10.1016/j.cnsns.2015.04.007.  Google Scholar

[12]

V.-T. PhamS. VaidyanathanC. K. VolosS. JafariN. V. Kuznetsov and T. M. Hoang, A novel memristive time–delay chaotic system without equilibrium points, The European Physical Journal Special Topics, 225 (2016), 127-136.   Google Scholar

[13]

V.-T. PhamS. JafariC. VolosA. GiakoumisS. Vaidyanathan and T. Kapitaniak, A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, 63 (2016), 878-882.  doi: 10.1109/TCSII.2016.2534698.  Google Scholar

[14]

K. Rajagopal, A. Karthikeyan and P. Duraisamy, Hyperchaotic chameleon: Fractional order fpga implementation, Complexity, 2017 (2017), Art. ID 8979408, 16 pp. doi: 10.1155/2017/8979408.  Google Scholar

[15]

D. Ruelle and F. Takens, On the nature of turbulence, Les Rencontres Physiciens-mathématiciens de Strasbourg-RCP25, 12 (1971), 1–44. Google Scholar

[16]

H. H. SunA. Abdelwahab and B. Onaral, Linear approximation of transfer function with a pole of fractional power, IEEE Transactions on Automatic Control, 29 (1984), 441-444.  doi: 10.1109/TAC.1984.1103551.  Google Scholar

[17]

M. SushchikL. S. Tsimring and A. R. Volkovskii, Performance analysis of correlation-based communication schemes utilizing chaos, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47 (2000), 1684-1691.  doi: 10.1109/81.899920.  Google Scholar

[18]

M. S. Tavazoei and M. Haeri, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Processing, 1 (2007), 171-181.  doi: 10.1049/iet-spr:20070053.  Google Scholar

[19]

A. WolfJ. B. SwiftH. L. Swinney and J. A. Vastano, Determining lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16 (1985), 285-317.  doi: 10.1016/0167-2789(85)90011-9.  Google Scholar

[20]

Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016.  Google Scholar

show all references

References:
[1]

G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathematical and Computer Modelling, 13 (1990), 17-43.  doi: 10.1016/0895-7177(90)90125-7.  Google Scholar

[2]

M. AhmadU. Shamsi and I. R. Khan, An enhanced image encryption algorithm using fractional chaotic systems, Procedia Computer Science, 57 (2015), 852-859.   Google Scholar

[3]

R. Caponetto and S. Fazzino, An application of adomian decomposition for analysis of fractional-order chaotic systems, International Journal of Bifurcation and Chaos, 23 (2013), 1350050, 7pp. doi: 10.1142/S0218127413500508.  Google Scholar

[4]

A. CharefH. H. SunY. Y. Tsao and B. Onaral, Fractal system as represented by singularity function, IEEE Transactions on Automatic Control, 37 (1992), 1465-1470.  doi: 10.1109/9.159595.  Google Scholar

[5]

D. DudkowskiS. JafariT. KapitaniakN. V. KuznetsovG. A. Leonov and A. Prasad, Hidden attractors in dynamical systems, Physics Reports, 637 (2016), 1-50.  doi: 10.1016/j.physrep.2016.05.002.  Google Scholar

[6]

S. HeK. Sun and H. Wang, Complexity analysis and dsp implementation of the fractional-order lorenz hyperchaotic system, Entropy, 17 (2015), 8299-8311.  doi: 10.3390/e17127882.  Google Scholar

[7]

R. C. Hilborn et al., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, The Clarendon Press, Oxford University Press, New York, 1994.  Google Scholar

[8]

M. A. JafariE. MlikiA. AkgulV.-T. PhamS. T. KingniX. Wang and S. Jafari, Chameleon: The most hidden chaotic flow, Nonlinear Dynamics, 88 (2017), 2303-2317.  doi: 10.1007/s11071-017-3378-4.  Google Scholar

[9]

S. T. Kingni, S. Jafari, H. Simo and P. Woafo, Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, The European Physical Journal Plus, 129 (2014), 76. doi: 10.1140/epjp/i2014-14076-4.  Google Scholar

[10]

G. A. LeonovN. V. Kuznetsov and V. I. Vagaitsev, Localization of hidden chuas attractors, Physics Letters A, 375 (2011), 2230-2233.  doi: 10.1016/j.physleta.2011.04.037.  Google Scholar

[11]

G. A. LeonovN. V. Kuznetsov and T. N. Mokaev, Hidden attractor and homoclinic orbit in lorenz-like system describing convective fluid motion in rotating cavity, Communications in Nonlinear Science and Numerical Simulation, 28 (2015), 166-174.  doi: 10.1016/j.cnsns.2015.04.007.  Google Scholar

[12]

V.-T. PhamS. VaidyanathanC. K. VolosS. JafariN. V. Kuznetsov and T. M. Hoang, A novel memristive time–delay chaotic system without equilibrium points, The European Physical Journal Special Topics, 225 (2016), 127-136.   Google Scholar

[13]

V.-T. PhamS. JafariC. VolosA. GiakoumisS. Vaidyanathan and T. Kapitaniak, A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, 63 (2016), 878-882.  doi: 10.1109/TCSII.2016.2534698.  Google Scholar

[14]

K. Rajagopal, A. Karthikeyan and P. Duraisamy, Hyperchaotic chameleon: Fractional order fpga implementation, Complexity, 2017 (2017), Art. ID 8979408, 16 pp. doi: 10.1155/2017/8979408.  Google Scholar

[15]

D. Ruelle and F. Takens, On the nature of turbulence, Les Rencontres Physiciens-mathématiciens de Strasbourg-RCP25, 12 (1971), 1–44. Google Scholar

[16]

H. H. SunA. Abdelwahab and B. Onaral, Linear approximation of transfer function with a pole of fractional power, IEEE Transactions on Automatic Control, 29 (1984), 441-444.  doi: 10.1109/TAC.1984.1103551.  Google Scholar

[17]

M. SushchikL. S. Tsimring and A. R. Volkovskii, Performance analysis of correlation-based communication schemes utilizing chaos, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47 (2000), 1684-1691.  doi: 10.1109/81.899920.  Google Scholar

[18]

M. S. Tavazoei and M. Haeri, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Processing, 1 (2007), 171-181.  doi: 10.1049/iet-spr:20070053.  Google Scholar

[19]

A. WolfJ. B. SwiftH. L. Swinney and J. A. Vastano, Determining lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16 (1985), 285-317.  doi: 10.1016/0167-2789(85)90011-9.  Google Scholar

[20]

Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016.  Google Scholar

Figure 1.  Self-excited attractor
Figure 2.  Hidden attractor
Figure 3.  a):Bifurcation plot of the chaotic cuttlefish with parameter $ b $; b): The corresponding finite time Lyapunov exponents; c): Cross section of basin of attraction of the system at $ y = 1 $ for $ a = 0.8 $; $ b = 0 $ d): Cross section of basin of attraction of the system at $ y = 1 $ for $ a = 0.8 $; $ b = 0.2 $ The notations $ P, C, T, U $ in the plots c, d denotes the regions of initial conditions leading to periodic, chaotic, tori and unbounded oscillations respectively
Figure 4.  2D phase portraits of the self-excited fractional order chaotic cuttlefish with the commensurate fractional order of $ q = 0.998 $ and $ a = 1.493, b = 0.6, m = 4 $
Figure 5.  2D phase portraits of the hidden attractor fractional order chaotic cuttlefish with the commensurate fractional order of $ q = 0.996 $ and $ a = 1.493, b = -0.8, m = 4 $
Figure 6.  Bifurcation of FOC cuttlefish (self-excited) system with order $ q $
Figure 7.  Bifurcation of FOC cuttlefish (hidden) system with order $ q $
Figure 8.  SCSK block diagrams of transmitter unit and receiver unit [17]
Figure 9.  Matlab-Simulink® block diagram of the transmitter unit of the SCSK modulated communication system
Figure 10.  Matlab-Simulink® block diagram of the receiver unit of the SCSK modulated communication system
Figure 11.  Signals of the SCSK modulated communication system using self-excited attractor of fractional order chaotic cuttlefish system (a) transmitted (b) SCSK modulated (c) SCSK modulated with noise (d) retrieved
Figure 12.  Signals of the SCSK modulated communication system using hidden attractor of fractional order chaotic cuttlefish system (a) transmitted (b) SCSK modulated (c) SCSK modulated with noise (d) retrieved
Figure 13.  Comparison of BER performances of the SCSK modulated communication system
Table 1.  Chaotic cuttlefish
Chaotic system System name Parameters Type of System
$\begin{array}{l} \dot x = y&\\ \dot y = - 4x - 4yz&\\ \dot z = {x^2} + {y^2} + b{z^2} - a&\end{array}$ SA $a = 0.6 - 1.5$ Self-excited attractor
$(b>0)$
HA $a = 0.6 - 1.5$ Hidden attractor
$(b \le 0)$
Chaotic system System name Parameters Type of System
$\begin{array}{l} \dot x = y&\\ \dot y = - 4x - 4yz&\\ \dot z = {x^2} + {y^2} + b{z^2} - a&\end{array}$ SA $a = 0.6 - 1.5$ Self-excited attractor
$(b>0)$
HA $a = 0.6 - 1.5$ Hidden attractor
$(b \le 0)$
Table 2.  LEs and KY dimension of cuttlefish systems
Attractor LEs KY dimension
Self-excited $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.0144, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0421 $ 2.342
Hidden $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.01865, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0372 $ 2.501
Attractor LEs KY dimension
Self-excited $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.0144, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0421 $ 2.342
Hidden $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.01865, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0372 $ 2.501
[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[4]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[5]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[15]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[16]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[17]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (175)
  • HTML views (276)
  • Cited by (0)

[Back to Top]