doi: 10.3934/dcdsb.2019205

Chaotic cuttlesh: king of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form

1. 

Centre for Non-Linear Dynamics, Defense University, Ethiopia

2. 

Institute of Energy, Mekelle University, Mekelle, Ethiopia

3. 

Department of Electronic and Automation, Vocational School of Hacibektas, Nevsehir Haci Bektas Veli University, 50800, Hacibektas, Nevsehir, Turkey

4. 

Department of Electrical and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, 54050 Serdivan, Sakarya, Turkey

5. 

Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

* Corresponding author: Akif Akgul

Received  March 2018 Revised  March 2019 Published  September 2019

There are many works on self-excited and hidden attractors. However the relationship between them is less investigated. In this study we present a system which can have both hidden self-excited attractors. Dynamical properties of the chaotic system are studied using the equilibrium points and Eigenvalues analysis, Lyapunov exponents and bifurcation plots. Since fractional order models are more interesting in engineering applications, the fractional order version of the proposed system is derived using Adomian decomposition method. Bifurcation and stability analysis of the fractional order model shows the existence of chaotic oscillations. To demonstrate the engineering importance of the fractional order model, we have designed a digital communication system with SCSK (Symmetric Chaos Shift Keying) modulation method separately for both self-excited attractor and hidden attractor, the bit error rate performance was compared.

Citation: Karthikeyan Rajagopal, Serdar Cicek, Akif Akgul, Sajad Jafari, Anitha Karthikeyan. Chaotic cuttlesh: king of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019205
References:
[1]

G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathematical and Computer Modelling, 13 (1990), 17-43.  doi: 10.1016/0895-7177(90)90125-7.  Google Scholar

[2]

M. AhmadU. Shamsi and I. R. Khan, An enhanced image encryption algorithm using fractional chaotic systems, Procedia Computer Science, 57 (2015), 852-859.   Google Scholar

[3]

R. Caponetto and S. Fazzino, An application of adomian decomposition for analysis of fractional-order chaotic systems, International Journal of Bifurcation and Chaos, 23 (2013), 1350050, 7pp. doi: 10.1142/S0218127413500508.  Google Scholar

[4]

A. CharefH. H. SunY. Y. Tsao and B. Onaral, Fractal system as represented by singularity function, IEEE Transactions on Automatic Control, 37 (1992), 1465-1470.  doi: 10.1109/9.159595.  Google Scholar

[5]

D. DudkowskiS. JafariT. KapitaniakN. V. KuznetsovG. A. Leonov and A. Prasad, Hidden attractors in dynamical systems, Physics Reports, 637 (2016), 1-50.  doi: 10.1016/j.physrep.2016.05.002.  Google Scholar

[6]

S. HeK. Sun and H. Wang, Complexity analysis and dsp implementation of the fractional-order lorenz hyperchaotic system, Entropy, 17 (2015), 8299-8311.  doi: 10.3390/e17127882.  Google Scholar

[7]

R. C. Hilborn et al., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, The Clarendon Press, Oxford University Press, New York, 1994.  Google Scholar

[8]

M. A. JafariE. MlikiA. AkgulV.-T. PhamS. T. KingniX. Wang and S. Jafari, Chameleon: The most hidden chaotic flow, Nonlinear Dynamics, 88 (2017), 2303-2317.  doi: 10.1007/s11071-017-3378-4.  Google Scholar

[9]

S. T. Kingni, S. Jafari, H. Simo and P. Woafo, Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, The European Physical Journal Plus, 129 (2014), 76. doi: 10.1140/epjp/i2014-14076-4.  Google Scholar

[10]

G. A. LeonovN. V. Kuznetsov and V. I. Vagaitsev, Localization of hidden chuas attractors, Physics Letters A, 375 (2011), 2230-2233.  doi: 10.1016/j.physleta.2011.04.037.  Google Scholar

[11]

G. A. LeonovN. V. Kuznetsov and T. N. Mokaev, Hidden attractor and homoclinic orbit in lorenz-like system describing convective fluid motion in rotating cavity, Communications in Nonlinear Science and Numerical Simulation, 28 (2015), 166-174.  doi: 10.1016/j.cnsns.2015.04.007.  Google Scholar

[12]

V.-T. PhamS. VaidyanathanC. K. VolosS. JafariN. V. Kuznetsov and T. M. Hoang, A novel memristive time–delay chaotic system without equilibrium points, The European Physical Journal Special Topics, 225 (2016), 127-136.   Google Scholar

[13]

V.-T. PhamS. JafariC. VolosA. GiakoumisS. Vaidyanathan and T. Kapitaniak, A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, 63 (2016), 878-882.  doi: 10.1109/TCSII.2016.2534698.  Google Scholar

[14]

K. Rajagopal, A. Karthikeyan and P. Duraisamy, Hyperchaotic chameleon: Fractional order fpga implementation, Complexity, 2017 (2017), Art. ID 8979408, 16 pp. doi: 10.1155/2017/8979408.  Google Scholar

[15]

D. Ruelle and F. Takens, On the nature of turbulence, Les Rencontres Physiciens-mathématiciens de Strasbourg-RCP25, 12 (1971), 1–44. Google Scholar

[16]

H. H. SunA. Abdelwahab and B. Onaral, Linear approximation of transfer function with a pole of fractional power, IEEE Transactions on Automatic Control, 29 (1984), 441-444.  doi: 10.1109/TAC.1984.1103551.  Google Scholar

[17]

M. SushchikL. S. Tsimring and A. R. Volkovskii, Performance analysis of correlation-based communication schemes utilizing chaos, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47 (2000), 1684-1691.  doi: 10.1109/81.899920.  Google Scholar

[18]

M. S. Tavazoei and M. Haeri, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Processing, 1 (2007), 171-181.  doi: 10.1049/iet-spr:20070053.  Google Scholar

[19]

A. WolfJ. B. SwiftH. L. Swinney and J. A. Vastano, Determining lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16 (1985), 285-317.  doi: 10.1016/0167-2789(85)90011-9.  Google Scholar

[20]

Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016.  Google Scholar

show all references

References:
[1]

G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathematical and Computer Modelling, 13 (1990), 17-43.  doi: 10.1016/0895-7177(90)90125-7.  Google Scholar

[2]

M. AhmadU. Shamsi and I. R. Khan, An enhanced image encryption algorithm using fractional chaotic systems, Procedia Computer Science, 57 (2015), 852-859.   Google Scholar

[3]

R. Caponetto and S. Fazzino, An application of adomian decomposition for analysis of fractional-order chaotic systems, International Journal of Bifurcation and Chaos, 23 (2013), 1350050, 7pp. doi: 10.1142/S0218127413500508.  Google Scholar

[4]

A. CharefH. H. SunY. Y. Tsao and B. Onaral, Fractal system as represented by singularity function, IEEE Transactions on Automatic Control, 37 (1992), 1465-1470.  doi: 10.1109/9.159595.  Google Scholar

[5]

D. DudkowskiS. JafariT. KapitaniakN. V. KuznetsovG. A. Leonov and A. Prasad, Hidden attractors in dynamical systems, Physics Reports, 637 (2016), 1-50.  doi: 10.1016/j.physrep.2016.05.002.  Google Scholar

[6]

S. HeK. Sun and H. Wang, Complexity analysis and dsp implementation of the fractional-order lorenz hyperchaotic system, Entropy, 17 (2015), 8299-8311.  doi: 10.3390/e17127882.  Google Scholar

[7]

R. C. Hilborn et al., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, The Clarendon Press, Oxford University Press, New York, 1994.  Google Scholar

[8]

M. A. JafariE. MlikiA. AkgulV.-T. PhamS. T. KingniX. Wang and S. Jafari, Chameleon: The most hidden chaotic flow, Nonlinear Dynamics, 88 (2017), 2303-2317.  doi: 10.1007/s11071-017-3378-4.  Google Scholar

[9]

S. T. Kingni, S. Jafari, H. Simo and P. Woafo, Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, The European Physical Journal Plus, 129 (2014), 76. doi: 10.1140/epjp/i2014-14076-4.  Google Scholar

[10]

G. A. LeonovN. V. Kuznetsov and V. I. Vagaitsev, Localization of hidden chuas attractors, Physics Letters A, 375 (2011), 2230-2233.  doi: 10.1016/j.physleta.2011.04.037.  Google Scholar

[11]

G. A. LeonovN. V. Kuznetsov and T. N. Mokaev, Hidden attractor and homoclinic orbit in lorenz-like system describing convective fluid motion in rotating cavity, Communications in Nonlinear Science and Numerical Simulation, 28 (2015), 166-174.  doi: 10.1016/j.cnsns.2015.04.007.  Google Scholar

[12]

V.-T. PhamS. VaidyanathanC. K. VolosS. JafariN. V. Kuznetsov and T. M. Hoang, A novel memristive time–delay chaotic system without equilibrium points, The European Physical Journal Special Topics, 225 (2016), 127-136.   Google Scholar

[13]

V.-T. PhamS. JafariC. VolosA. GiakoumisS. Vaidyanathan and T. Kapitaniak, A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, 63 (2016), 878-882.  doi: 10.1109/TCSII.2016.2534698.  Google Scholar

[14]

K. Rajagopal, A. Karthikeyan and P. Duraisamy, Hyperchaotic chameleon: Fractional order fpga implementation, Complexity, 2017 (2017), Art. ID 8979408, 16 pp. doi: 10.1155/2017/8979408.  Google Scholar

[15]

D. Ruelle and F. Takens, On the nature of turbulence, Les Rencontres Physiciens-mathématiciens de Strasbourg-RCP25, 12 (1971), 1–44. Google Scholar

[16]

H. H. SunA. Abdelwahab and B. Onaral, Linear approximation of transfer function with a pole of fractional power, IEEE Transactions on Automatic Control, 29 (1984), 441-444.  doi: 10.1109/TAC.1984.1103551.  Google Scholar

[17]

M. SushchikL. S. Tsimring and A. R. Volkovskii, Performance analysis of correlation-based communication schemes utilizing chaos, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47 (2000), 1684-1691.  doi: 10.1109/81.899920.  Google Scholar

[18]

M. S. Tavazoei and M. Haeri, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Processing, 1 (2007), 171-181.  doi: 10.1049/iet-spr:20070053.  Google Scholar

[19]

A. WolfJ. B. SwiftH. L. Swinney and J. A. Vastano, Determining lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16 (1985), 285-317.  doi: 10.1016/0167-2789(85)90011-9.  Google Scholar

[20]

Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016.  Google Scholar

Figure 1.  Self-excited attractor
Figure 2.  Hidden attractor
Figure 3.  a):Bifurcation plot of the chaotic cuttlefish with parameter $ b $; b): The corresponding finite time Lyapunov exponents; c): Cross section of basin of attraction of the system at $ y = 1 $ for $ a = 0.8 $; $ b = 0 $ d): Cross section of basin of attraction of the system at $ y = 1 $ for $ a = 0.8 $; $ b = 0.2 $ The notations $ P, C, T, U $ in the plots c, d denotes the regions of initial conditions leading to periodic, chaotic, tori and unbounded oscillations respectively
Figure 4.  2D phase portraits of the self-excited fractional order chaotic cuttlefish with the commensurate fractional order of $ q = 0.998 $ and $ a = 1.493, b = 0.6, m = 4 $
Figure 5.  2D phase portraits of the hidden attractor fractional order chaotic cuttlefish with the commensurate fractional order of $ q = 0.996 $ and $ a = 1.493, b = -0.8, m = 4 $
Figure 6.  Bifurcation of FOC cuttlefish (self-excited) system with order $ q $
Figure 7.  Bifurcation of FOC cuttlefish (hidden) system with order $ q $
Figure 8.  SCSK block diagrams of transmitter unit and receiver unit [17]
Figure 9.  Matlab-Simulink® block diagram of the transmitter unit of the SCSK modulated communication system
Figure 10.  Matlab-Simulink® block diagram of the receiver unit of the SCSK modulated communication system
Figure 11.  Signals of the SCSK modulated communication system using self-excited attractor of fractional order chaotic cuttlefish system (a) transmitted (b) SCSK modulated (c) SCSK modulated with noise (d) retrieved
Figure 12.  Signals of the SCSK modulated communication system using hidden attractor of fractional order chaotic cuttlefish system (a) transmitted (b) SCSK modulated (c) SCSK modulated with noise (d) retrieved
Figure 13.  Comparison of BER performances of the SCSK modulated communication system
Table 1.  Chaotic cuttlefish
Chaotic system System name Parameters Type of System
$\begin{array}{l} \dot x = y&\\ \dot y = - 4x - 4yz&\\ \dot z = {x^2} + {y^2} + b{z^2} - a&\end{array}$ SA $a = 0.6 - 1.5$ Self-excited attractor
$(b>0)$
HA $a = 0.6 - 1.5$ Hidden attractor
$(b \le 0)$
Chaotic system System name Parameters Type of System
$\begin{array}{l} \dot x = y&\\ \dot y = - 4x - 4yz&\\ \dot z = {x^2} + {y^2} + b{z^2} - a&\end{array}$ SA $a = 0.6 - 1.5$ Self-excited attractor
$(b>0)$
HA $a = 0.6 - 1.5$ Hidden attractor
$(b \le 0)$
Table 2.  LEs and KY dimension of cuttlefish systems
Attractor LEs KY dimension
Self-excited $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.0144, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0421 $ 2.342
Hidden $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.01865, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0372 $ 2.501
Attractor LEs KY dimension
Self-excited $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.0144, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0421 $ 2.342
Hidden $ {{\rm{L}}_{\rm{1}}}{\rm{ = }}0.01865, {{\rm{L}}_2}{\rm{ = 0 }}{\rm{, }}{{\rm{L}}_3} = - 0.0372 $ 2.501
[1]

Nemanja Kosovalić, Brian Pigott. Self-excited vibrations for damped and delayed higher dimensional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2413-2435. doi: 10.3934/dcds.2019102

[2]

Emile Franc Doungmo Goufo. Multi-directional and saturated chaotic attractors with many scrolls for fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 629-643. doi: 10.3934/dcdss.2020034

[3]

Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803

[4]

José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357

[5]

Ruiqiang Guo, Lu Song. Optical chaotic secure algorithm based on space laser communication. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1355-1369. doi: 10.3934/dcdss.2019093

[6]

Chengjian Zhang, Lu Zhao. The attractors for 2nd-order stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 575-590. doi: 10.3934/dcds.2017023

[7]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[8]

Ahmed Y. Abdallah. Attractors for first order lattice systems with almost periodic nonlinear part. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019218

[9]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

[10]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[11]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[12]

Alexey Cheskidov, Landon Kavlie. Pullback attractors for generalized evolutionary systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 749-779. doi: 10.3934/dcdsb.2015.20.749

[13]

Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585

[14]

Jianghong Bao, Dandan Chen, Yongjian Liu, Hongbo Deng. Coexisting hidden attractors in a 5D segmented disc dynamo with three types of equilibria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6053-6069. doi: 10.3934/dcdsb.2019130

[15]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[16]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[17]

Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43

[18]

Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473

[19]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[20]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (39)
  • HTML views (156)
  • Cited by (0)

[Back to Top]